Research progress of high power semiconductor laser pump source
-
摘要: 高功率半导体激光器是固体激光器和光纤激光器的主要泵浦源。激光泵浦源性能的大幅提升直接促进了固体激光器、光纤激光器等激光器的发展。主要介绍了8xx nm和9xx nm系列半导体激光泵浦源的最新研究进展,8xx nm单管输出功率已达18.8 W@95 µm,巴条输出功率已达1.8 kW(QCW),9xx nm单管输出功率已达35 W@100 µm,巴条输出功率已达1.98 kW(QCW)。谱宽<1 nm的窄谱宽半导体激光器输出功率可达14 W。展望了未来半导体激光器泵浦源的发展趋势。Abstract: High power semiconductor lasers are the main pump source for solid-state lasers and fiber lasers. The improvement in the performance of laser pump sources directly promotes the development of solid-state lasers, fiber lasers and other lasers. The article introduces the latest research progress of 8xx nm and 9xx nm semiconductor laser pump sources. The output power research level of 8xx nm single-emitter laser has reached 18.8 W@95 µm, the output power research level of 8xx nm laser bar has reached 1.8 kW(QCW), the output power research level of 9xx nm single-emitter laser has reached 35 W@100 µm, the output power research level of 9xx nm laser bar has reached 1.98 kW(QCW). The output power of a narrow linewidth semiconductor laser with a linewidth <1 nm can reach 14 W. The development trend of semiconductor laser pump source in the future is forecasted.
-
Key words:
- high power /
- semiconductor laser /
- fiber laser /
- bar /
- laser pump source
-
表 1 8xx nm半导体激光器单管输出功率
Table 1. Output power of 8xx nm single-emitter lasers
year wavelength/nm output power/W key parameters conversion efficiency/% research group reference 2014 88x 18.8 95 μm,3.8 mm 58 USA,nLight [9] 2015 808 10 190 μm,4 mm − Japan,Optoenergy [10] 2016 808 22 200 μm 54 JENOPTIK [11] 2016 808 9 140 μm,2 mm 63% Coherent [12] 2019 808 14 200 μm,4 mm 64 Ferdinand-Braun-Institut [13] 2019 808 2.8 100 μm,2 mm − Wang Yue [14] 2020 880 19 200 μm,4 mm − Institute of Semiconductors of CAS − 表 2 8xx nm激光器巴条输出功率
Table 2. Output power of 8xx nm laser bar
year wavelength/nm output power key parameters fill factor/% research group reference 2012 88x QCW:560 W bar width:3 mm;
cavity length:3 mm80 USA,nLight [19] 2013 808 CW:150 W bar width:1 cm;
cavity length:1.5 mm50 USA,nLight [20] 2014 88x QCW:630 W bar width:3 mm;
cavity length:3 mm80 USA,nLight [9] 2016 808 QCW:200 W bar width:5 mm;
cavity length:1.5 mm− Russia [21] 2016 880 QCW:250 W bar width:0.5 cm 80 USA,nLight [22] 2017 80x QCW:210 W bar width:5 mm;
cavity length:1 mm72 M.A. Ladugin [23] 2017 880 1.8 kW(200 μs,14 Hz) bar width:1 cm;
cavity length:3 mm80 USA,nLight [24] 2017 808 QCW:613 W cavity length:2 mm 85 Xi’an Institute of Optics and
Precision Mechanics of CAS[25] 2018 808 QCW:500 W cavity length:1.5 mm 80 OSRAM [26] 2020 8xx CW:200 W cm-bar − Institute of Semiconductors of CAS − 表 3 9xx nm半导体激光器单管输出功率
Table 3. Output power of 9xx nm single-emitter semiconductor lasers
year wavelength/nm output power/W key parameters conversion efficiency/% research group reference 2009 980 20 96 μm,4 mm − Ferdinand-Braun-Institut [32] 2013 975 15 100 μm,4 mm 74 Ferdinand-Braun-Institut [33] 2013 915 13.5 85 μm,4 mm − S.McDougall [34] 2015 9xx 29.5 100 μm,5.7 mm − USA,JDSU [35] 2015 915 18 150 μm,5 mm 58 USA,nLight [36] 2015 915 24 100 μm,4 mm 60 Japan,Optoenergy [37] 2016 915 12.4 95 μm,4.8 mm 60 Research Institute of Tsinghua
University in Shenzhen[38] 2017 915 33 220 μm,4 mm 60 Japan,Fujikura [39] 2018 940 14 100 μm,4 mm 63 Ferdinand-Braun-Institut [40] 2019 975 20 200 μm,4 mm 66.7 Japan,Fujikura [41] 2019 9xx 14.4 200 μm,2 mm 71.8 Institute of Semiconductors of CAS [42] 2020 975 21 100 μm,4 mm − Institute of Semiconductors of CAS [43] 表 4 9xx nm激光器巴条输出功率
Table 4. Output power of 9xx nm laser bar
year wavelength/nm output power key parameters fill factor/(%) research group reference 2013 9xx QCW:1.7 kW bar width:1 cm;
cavity length:6 mm72 Ferdinand-Braun-Institut [45] 2014 940 CW:200 W cavity length:4 mm 50 Jenoptik [46] 2015 940 QCW:1.98 kW bar width:1 cm;
cavity length:4 mm69 Ferdinand-Braun-Institut [47] 2015 9xx >300 W − 60 USA,Trumpf Photonics [48] 2016 940 QCW:1 kW bar width:1 cm;
cavity length:4 mm69 Ferdinand-Braun-Institut [49] 2017 940 QCW:600 W bar width:1 cm;
cavity length:4 mm70 M. M. Karow [50] 2018 938 CW:476 W − 60 USA,Trumpf Photonics [51] 2019 9xx 450 W bar width:1 cm;
cavity length:4.2 mm73 II-VI Laser Enterprise [52] 2019 9xx 1 kW(0.2 ms,10 Hz) − 87 Ferdinand-Braun-Institut [53] 2019 960 665.6 W(500 μs) bar width:1 cm;
cavity length:2 mm63.8 Xi’an Institute of Optics and
Precision Mechanics of CAS[54] 2020 9xx CW:300 W,
QCW:996 Wcm-bar 70 Institute of Semiconductors of CAS 表 5 9xx nm高功率窄谱宽半导体激光器研究进展
Table 5. Research progress of 9xx nm high-power narrow-linewidth semiconductor laser
year wavelength/nm output power/W device type spectral linewidth/nm research group reference 2010 975 10 DFB,second order grating <1 Ferdinand-Braun-Institut [57] 2010 980 14 DBR,sixth order grating <1 Ferdinand-Braun-Institut [58] 2012 976 11 DFB,eightieth-order grating <1 Ferdinand-Braun-Institut [59] 2014 970 6 DFB,eightieth-order grating <0.7 Jonathan Decker [60] 2017 975 5.5 DFB,second order grating <1 Mostallino [61] 2019 980 10.7 DBR,sixth order grating 2.77 Qiao Chuang [62] -
[1] 闫宏宇. 高功率半导体激光器的光束特性评价[D]. 长春: 长春理工大学, 2019: 1-5.Yan Hongyu. Evaluation of beam characteristics of high power semiconductor laser[D]. Changchun: Changchun University of Science and Technology, 2019: 1-5 [2] 王涛, 杜团结, 吴逢铁. LD泵浦的Nd:YVO4激光器被动式产生近似无衍射绿光[J]. 强激光与粒子束, 2014, 26:011007. (Wang Tao, Du Tuanjie, Wu Fengtie. Laser diode pumped Nd:YVO4laser generating quasi-non-diffracting green beam by passive axicon[J]. High Power Laser and Particle Beams, 2014, 26: 011007 doi: 10.3788/HPLPB20142601.11007 [3] 乔忠良. 高亮度大功率半导体激光器研究[D]. 长春: 长春理工大学, 2011: 1-2.Qiao Zhongliang. Research on high-power high-brightness semiconductor lasers[D]. Changchun: Changchun University of Technology, 2011: 1-2 [4] 李再金, 胡黎明, 王烨, 等. 808 nm高占空比大功率半导体激光器阵列[J]. 强激光与粒子束, 2009, 21(11):1615-1618. (Li Zaijin, Hu Liming, Wang Ye, et al. High power high duty-cycle 808 nm wavelength laser diode[J]. High Power Laser and Particle Beams, 2009, 21(11): 1615-1618 [5] 许阳, 房强, 谢兆鑫, 等. 基于915 nm半导体激光单端前向抽运的单纤准单模2 kW全光纤激光振荡器[J]. 中国激光, 2018, 45:0401003. (Xu Yang, Fang Qiang, Xie Zhaoxin, et al. Single fiber quasi-single mode 2 kW all-fiber laser oscillator based on single-end 915 nm semiconductor laser forward-pumping[J]. Chinese Journal of Lasers, 2018, 45: 0401003 doi: 10.3788/CJL201845.0401003 [6] 刘储. 脊型波导852 nm半导体激光器模式特性研究[D]. 北京: 北京工业大学, 2017: 17-28.Liu Chu. Fundamental lateral mode characteristics of the 852 nm ridge waveguide semiconductor laser diode[D].Beijing: Beijing University of Technology, 2017: 17-28 [7] 李璟, 马骁宇, 王俊. 高功率14xx nm锥形增益区脊形波导结构量子阱激光器的研制[J]. 半导体学报, 2007, 28(1):108-112. (Li Jing, Ma Xiaoyu, Wang Jun. High-power ridge waveguide tapered diode lasers at 14xx nm[J]. Chinese Journal of Semiconductors, 2007, 28(1): 108-112 doi: 10.3969/j.issn.1674-4926.2007.01.023 [8] Winterfeldt M, Crump P, Knigge S, et al. High beam quality in broad area lasers via suppression of lateral carrier accumulation[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1809-1812. doi: 10.1109/LPT.2015.2443186 [9] Chen Z G, Bai J, Dong W, et al. High power and high efficiency kW 88x-nm multi-junction pulsed diode laser bars and arrays[C]//Proc of SPIE. 2014: 896514. [10] Yamagata Y, Yamada Y, Kaifuchi Y, et al. Performance and reliability of high power, high brightness 8xx-9xx nm semiconductor laser diodes[C]// IEEE High Power Diode Lasers & Systems Conference. 2015: 7-8. [11] Pietrzak A, Hülsewede R, Zorn M, et al. High-power single emitters and low fill factor bars emitting at 808 nm[C]//Proc of SPIE. 2016: 97330R. [12] Morales J, Lehkonen S, Liu G, et al. Advances in 808 nm high power diode laser bars and single emitters[C]//Proc of SPIE. 2016: 97330T. [13] Crump P, Frevert C, Maaβdorf A, et al. Efficient, high power pumps for mid-IR solid state lasers enabled by 200 k operation of 808 nm diode lasers[C]// IEEE Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2019. [14] 王岳, 王勇, 李占国, 等. 全息光刻制备808 nm腔面光栅半导体激光器[J]. 发光学报, 2019, 40(9):1130-1135. (Wang Yue, Wang Yong, Li Zhanguo, et al. 808 nm cavity surface grating semiconductor laser by holographic lithography[J]. Chinese Journal of Luminescence, 2019, 40(9): 1130-1135 doi: 10.3788/fgxb20194009.1130 [15] Pierer J, Lützelschwab M, Grossmann S, et al. Automated assembly processes of high power single emitter diode lasers for 100 W in 105 μm/NA 0.15 fiber module[C]//Proc of SPIE. 2011: 78190I. [16] Jiang Xiaochen, Liu Rui, Gao Yanyan, et al. Packaging of wavelength stabilized 976 nm 100 W 105 m 0.15 NA fiber coupled diode lasers[C]//Proc of SPIE. 2016: 97300I. [17] 朱洪波, 郝明明, 彭航宇, 等. 基于808 nm半导体激光器单管合束技术的光纤耦合模块[J]. 中国激光, 2012, 39(5):1-5. (Zhu Hongbo, Hao Mingming, Peng Hangyu, et al. Module of fiber coupled diode laser based on 808 nm single emitters combination[J]. Chinese Journal of Lasers, 2012, 39(5): 1-5 [18] 杨逸飞, 秦文斌, 刘友强, 等. 基于光束填充的多单管半导体激光器光纤耦合[J]. 强激光与粒子束, 2020, 32:071005. (Yang Yifei, Qin Wenbin, Liu Youqiang, et al. Research on fiber coupling of multi-single emitters diode laser based on beam filling[J]. High Power Laser and Particle Beams, 2020, 32: 071005 [19] Bai J G, Chen Z, Leisher P, et al. High-efficiency kW-class QCW 88x nm diode semiconductor laser bars with passive cooling[C]//Proc of SPIE. 2012, 82412. [20] Bai J G, Bao L, Dong W, et al. Optimized performance of 808 nm diode laser bars for efficient high-power operation[C]//Proc of SPIE. 2013: 86050F7. [21] Bagaev T A, Ladugin M A, Andreev A Y, et al. High-power 808 nm laser bars (5 mm) with wall-plug efficiency more than 67%[C]//IEEE International Conference Laser Optics. 2016: R3-31. [22] Morales J, Lehkonen S, Liu G, et al. Advances in 808 nm high power diode laser bars and single emitters[C]//Proc of SPIE. 2016: 97330T. [23] Ladugin M A, Marmalyuk A, Padalitsa A, et al. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%[J]. Quantum Electronics, 2017, 47(4): 291-293. doi: 10.1070/QEL16365 [24] Kanskar M, Chen Z, Dong W, et al. High power and high efficiency 1.8-kW pulsed diode laser bar[J]. Journal of Photonics for Energy, 2017, 7: 016003. doi: 10.1117/1.JPE.7.016003 [25] 王贞福, 李特, 杨国文, 等. 808 nm准连续600 W高功率半导体激光芯片研制[J]. 中国激光, 2017, 44(6):43-48. (Wang Zhenfu, Li Te, Yang Guowen, et al. Development of 808 nm quasi-continuous wave laser diode bar with 600 W output power[J]. Chinese Journal of Lasers, 2017, 44(6): 43-48 [26] Müller M, Hein S, Lauer C, et al. Advances in infrared high power lasers for long term operation[C]//Proc of SPIE. 2018: 105410I. [27] Köhler B, Unger A, Kindervater T, et al. Wavelength stabilized multi-kW diode laser systems[C]//Proc of SPIE. 2015: 93480Q. [28] Hou Dong, Wang Jingwei, Zhang Pu, et al. High power diode laser stack development using gold-tin bonding technology[C]//Proc of SPIE. 2015: 934604. [29] Sipes D L. Highly efficient neodymium: yttrium aluminum garnet laser end pumped by a semiconductor laser array[J]. Applied Physics Letters, 1985, 47(2): 74-76. doi: 10.1063/1.96256 [30] Chung H S, Lee M S. Low noise, high efficiency L-band EDFA with 980 nm pumping[J]. Electronics Letters, 1999, 35(13): 1099-1100. doi: 10.1049/el:19990750 [31] Chen J, Zhu X, Sibbett W. Rate-equation studies of erbium-doped fiber lasers with common pump and laser energy bands[J]. Journal of the Optical Society of America B, 1992, 9(10): 1876-1882. doi: 10.1364/JOSAB.9.001876 [32] Crump P, Blume G, Paschke K, et al. 20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96μm[C]// Proc of SPIE. 2009: 719814. [33] Frevert C, Crump P, Wenzel H, et al. Efficiency optimization of high power diode lasers at low temperatures[C]//IEEE Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference. 2013. [34] McDougall S, McKee A, Eddie I, et al. Development of high power laser technology: 915 nm mini-bars for fibre laser pumping and red laser bars for cinema/projector applications[C]//IEEE High Power Diode Lasers and Systems Conference. 2013: 22-23. [35] Demir A, Peters M, Duesterberg R, et al. 29.5 W continuous wave output from 100 μm wide laser diode[C]//Proc of SPIE. 2015: 93480G. [36] Bao L, Kanskar M, Devito M, et al. High reliability demonstrated on high-power and high-brightness diode lasers[C]//Proc of SPIE. 2015: 93480C. [37] Yamagata Y, Yamada Y, Muto M, et al. 915 nm high-power broad area laser diodes with ultra-small optical confinement based on Asymmetric Decoupled Confinement Heterostructure (ADCH)[C]//Proc of SPIE. 2015: 93480F. [38] Hu M, Wang W M, Kuang L X, et al. High-brightness 95-μm broad-area 915 nm lasers with 29.4 W COMD power[C]//IEEE Asia Communications and Photonics Conference. 2016. [39] Zediker M S, Kaifuchi Y, Yamagata Y, et al. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes[C]//Proc of SPIE. 2017: 100860D. [40] Kaul T, Erbert G, Maassdorf A, et al. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs[J]. Semiconductor Science and technology, 2018, 33: 035005. doi: 10.1088/1361-6641/aaa221 [41] Kaifuchi Y, Yoshida K, Yamagata Y, et al. Enhanced power conversion efficiency in 900 nm range single emitter broad stripe laser diodes maintaining high power operability[C]// Proc of SPIE. 2019: 109000F. [42] 袁庆贺, 井红旗, 仲莉, 等. 高功率高可靠性9xx nm激光二极管[J]. 中国激光, 2020, 47(4):61-65. (Yuan Qinghe, Jing Hongqi, Zhong Li, et al. High-power and high-reliability 9xx-nm laser diode[J]. Chinese Journal of Lasers, 2020, 47(4): 61-65 [43] 曼玉选, 仲莉, 马骁宇, 等. 极低内部光学损耗975 nm半导体激光器[J]. 光学学报, 2020:40:19140011. (Man Yuxuan, Zhong Li, Ma Xiaoyu, et al. 975 nm semiconductor lasers with ultra-low internal optical loss[J]. Chinese Journal of Luminescence, 2020: 40:19140011 [44] Crump P, Roder C, Staske R, et al. Limitations to peak continuous wave power in high power broad area single emitter 980 nm diode lasers[C]//IEEE European Conference on Lasers & Electro-optics & European Quantum Electronics Conference. 2009. [45] Crump P, Frevert C, Wenzel H, et al. Cryolaser: Innovative cryogenic diode laser bars optimized for emerging ultra-high power laser applications[C]// IEEE Conference on Lasers and Electro-Optics.2013. [46] Pietrzak A, Huelsewede R, Zorn M, et al. New highly efficient laser bars and laser arrays for 8xx-10xx nm pumping applications[C]//Proc of SPIE. 2014: 89650T. [47] Frevert C, Crump P, Bugge F. Low-temperature optimized 940 nm diode laser bars with 1.98 kW peak power at 203 K[C]//IEEE Conference on Lasers and Electro-Optics.2015 [48] Heinemann S, An H, Barnowski T, et al. Packaging of high-power bars for optical pumping and direct applications[C]//Proc of SPIE. 2015: 934807. [49] Frevert C, Bugge F, Knigge S, et al. 940 nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203 K: analysis of remaining limits and path to higher efficiency and power at 200 K and 300 K[C]//Proc of SPIE. 2016: 97330L. [50] Karow M M, Frevert C, Platz R, et al. Efficient 600-W-laser bars for long-pulse pump applications at 940 and 975 nm[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1683-1686. doi: 10.1109/LPT.2017.2743242 [51] Heinemann S, McDougall S D, Ryu G, et al. Advanced chip designs and novel cooling techniques for brightness, scaling of industrial, high power diode laser bars[C]//Proc of SPIE. 2018: 105140Y. [52] Jürgen Müller, Rainer Bättig, Beer V, et al. Towards 300 W high power laser bars[C]//Proc of SPIE. 2019: 109000C. [53] Karow M M, Martin D, Della Casa P, et al. Narrower far field and higher efficiency in 1 kW diode-laser bars using improved lateral structuring[C]//IEEE Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference.2019 [54] 李波, 王贞福, 仇伯仓, 等. 高功率准连续半导体激光阵列中应变对独立发光点性能的影响[J]. 光子学报, 2020, 49(9):25-32. (Li Bo, Wang Zhenfu, Qiu Bocang, et al. Influence of strain on the performance of independent emitters in high power quasi-continuous semiconductor laser array[J]. Acta Photonica Sinica, 2020, 49(9): 25-32 [55] Demidovich A A, Shkadarevich A P, Danailov M B, et al. Comparison of CW laser performance of Nd:KGW, Nd: YAG, Nd: BEL, and Nd: YVO4 under laser diode pumping[J]. Applied Physics B, 1998, 67(1): 11-15. doi: 10.1007/s003400050467 [56] Leisher P, Price K, Karlsen S, et al. High-performance wavelength-locked diode lasers[C]//Proc of SPIE. 2009: 719812. [57] Crump P, Schultz C M, Pietrzak A, et al. 975-nm high-power broad area diode lasers optimized for narrow spectral linewidth applications[C]//Proc of SPIE. 2010: 75830N. [58] Fricke J, Bugge F, Ginolas A, et al. High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings[J]. IEEE Photonics Technology Letters, 2010, 22(5): 284-286. doi: 10.1109/LPT.2009.2038792 [59] Fricke J, Wenzel H, Bugge F, et al. High-power distributed feedback lasers with surface gratings[J]. IEEE Photonics Technology Letters, 2012, 24(16): 1443-1445. doi: 10.1109/LPT.2012.2206378 [60] Decker J, Crump P, Fricke J, et al. Narrow stripe broad area lasers with high order distributed feedback surface gratings[J]. IEEE Photonics Technology Letters, 2014, 26(8): 829-832. doi: 10.1109/LPT.2014.2307115 [61] Mostallino R, Garcia M, Larrue A, et al. Thermal management characterization of microassemblied high power distributed-feedback broad area lasers emitting at 975 nm[C]// IEEE 67th Electronic Components and Technology Conference. 2017: 563-574. [62] 乔闯, 苏瑞巩, 李翔, 等. 980 nm高功率DBR半导体激光器的设计及工艺[J]. 中国激光, 2019, 46(7):16-20. (Qiao Chuang, Su Ruigong, Li Xiang, et al. Design and fabrication of 980 nm distributed Bragg reflection semiconductor laser with high power[J]. Chinese Journal of Lasers, 2019, 46(7): 16-20 [63] Lauer C, Bachmann A, Furitsch M, et al. Extra bright high power laser bars[C]//IEEE High Power Diode Lasers and Systems Conference. 2015: 37-38. [64] Wang X, Wenzel H, Eppich B, et al. 56 W optical output power at 970 nm from a truncated tapered semiconductor optical amplifier[C]//IEEE Photonic Society 24th Annual Meeting. 2011: 577-578. [65] Vu T N, Klehr A, Sumpf B, et al. Tunable 975 nm nanosecond diode-laser-based master-oscillator power-amplifier system with 16.3 W peak power and narrow spectral linewidth below 10 pm[J]. Optics Letters, 2014, 39(17): 5138-5141. doi: 10.1364/OL.39.005138 [66] Fiebig C, Blume G, Kaspari C, et al. 12 W high-brightness single-frequency DBR tapered diode laser[J]. Electronics Letters, 2008, 44(21): 1253-1255. doi: 10.1049/el:20081371 [67] Wang X Z, Erbert G, Wenzel H, et al. 17 W near-diffraction-limited 970 nm output from a tapered semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 2013, 25(2): 115-118. doi: 10.1109/LPT.2012.2228185 [68] 孙胜明, 范杰, 徐莉, 等. 锥形半导体激光器研究进展[J]. 中国光学, 2019, 12(1):51-61. (Sun Shengming, Fan Jie, Xu Li, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 51-61