留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S波段HYBRID聚束-加速结构的样机研制

高斌 裴士伦 王辉 赵世琦 池云龙

高斌, 裴士伦, 王辉, 等. S波段HYBRID聚束-加速结构的样机研制[J]. 强激光与粒子束, 2021, 33: 024002. doi: 10.11884/HPLPB202133.200162
引用本文: 高斌, 裴士伦, 王辉, 等. S波段HYBRID聚束-加速结构的样机研制[J]. 强激光与粒子束, 2021, 33: 024002. doi: 10.11884/HPLPB202133.200162
Gao Bin, Pei Shilun, Wang Hui, et al. Development of S-band hybrid bunching-accelerating structure prototype[J]. High Power Laser and Particle Beams, 2021, 33: 024002. doi: 10.11884/HPLPB202133.200162
Citation: Gao Bin, Pei Shilun, Wang Hui, et al. Development of S-band hybrid bunching-accelerating structure prototype[J]. High Power Laser and Particle Beams, 2021, 33: 024002. doi: 10.11884/HPLPB202133.200162

S波段HYBRID聚束-加速结构的样机研制

doi: 10.11884/HPLPB202133.200162
基金项目: 国家自然科学基金项目(11475201);中国科学院青年创新促进会基金项目
详细信息
    作者简介:

    高 斌(1990—),男,博士,从事直线加速器物理与微波技术研究;gaobin2019@126.com

  • 中图分类号: TM931

Development of S-band hybrid bunching-accelerating structure prototype

  • 摘要: Hybrid聚束-加速结构是把驻波预聚束器、行波聚束器和标准加速管集成到一起的新型RF结构。简述了对S波段Hybrid聚束-加速结构样机的束流动力学优化和微波设计结果,解释了Hybrid结构导致发射度增长的原因,对此样机进行了射频低功率测试。样机的冷测结果与RF设计结果一致性很好。在冷测频率2 855.21 MHz处,实测S11小于−45 dB,腔间相移偏差小于±2°,VSWR≤1.2对应的带宽大于5 MHz,轴向场分布完全满足动力学要求。
  • 图  1  采用Hybrid聚束-加速结构代替标准聚束系统示意图

    Figure  1.  Schematic of replacing the standard bunching system with the hybrid bunching-accelerating structure (HBaS)

    图  2  横向发射度增长曲线

    Figure  2.  Transverse emittance evolutions along the linac

    图  3  HBaS的SUPERFISH模型图

    Figure  3.  SUPERFISH model for the HBaS

    图  4  Hybrid聚束-加速结构机械设计模型

    Figure  4.  Mechanical design for the hybrid bunching-accelerating structure

    图  5  焊后Hybrid聚束-加速结构样机

    Figure  5.  Hybrid bunching-accelerating structure prototype after welding

    图  6  调配前Hybrid聚束-加速结构的整管微波特性

    Figure  6.  Bead-pull measurement results before tuning

    图  7  调谐后的测量结果

    Figure  7.  Bead-pull measurement results after tuning

    图  8  调谐前后局部反射系数

    Figure  8.  Local S11,n before/after tuning

    表  1  加速单元排布方案

    Table  1.   β value for the accelerating cells

    variantβ value for the cells in the SW section$ {E}_{\rm{SW}}/{E}_{\rm{TW}} $β value for the cells in the TW section
    SW1SW2TW1TW2TW3TW4TW5TW6TW7TW8
    10.750.750.7511111
    21.260.740.4370.750.750.7511111
    30.750.750.750.751111
    41.260.740.440.750.750.750.751111
    50.750.750.750.880.920.9511
    61.260.740.4250.750.750.750.880.920.9511
    下载: 导出CSV

    表  2  动力学模拟结果

    Table  2.   Beam dynamic results for the bunching system

    variantcapturing efficiency/%${E}_{ {\rm{ave} }}$/MeVtrans efficiency/%$ {E}_{{\rm{ave}}} $/MeVtrans efficiency/%$ {E}_{{\rm{ave}}} $/MeV$ \delta E $/MeV
    bunching system exitchicane system exitlinac exit
    1 78.9 11.1 51.4 11.8 51.4 101.2 ±3.9
    2 84.6 11.6 66.5 11.6 66.5 100.6 ±4.0
    3 83.7 10.9 70.4 11.2 70.4 94.8 ±9.9
    4 89.1 12.3 71.0 12.3 71.0 101.4 ±3.9
    5 81.6 11.2 70.4 11.5 70.4 95 ±10.1
    6 87.4 12.3 72.8 12.3 72.8 101. ±3.9
    下载: 导出CSV

    表  3  Hybrid聚束-加速结构动力学要求

    Table  3.   Dynamic requirements for the HBaS

    β values for the cells in the SW sectionESW/ETWβ values for the cells in the TW section
    SW1SW2TW1TW2TW3TW4TW5TW6TW7TW8~42
    1.260.740.440.750.750.750.880.920.9511
    下载: 导出CSV
  • [1] Ren W, Liu Y, Wu W, et al. The BEPC R&D Report, Part I: Injector[R]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences 1989.
    [2] Pisen A, Rinolfi L. A new bunching system for the LEP injector linac[R]. CERN PS90-58 (LP), 1990.
    [3] Zhao Minhua, Lin Guoqiang, Zhong S P, et al. Preliminary design report of SSRF linac[R]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2004.
    [4] Kulkarni N S, Dhingra R, Kumar V. Physics design of a 10 MeV, 6 kW travelling wave electron linac for industrial applications[J]. Pramana J Phys, 2016, 87: 74. doi: 10.1007/s12043-016-1279-6
    [5] Spataro B, Valloni A, Alesini D, et al. RF properties of a X-band hybrid photoinjector[J]. Nuclear Instruments Methods in Physics Research Section A, 2011, 657: 99-106. doi: 10.1016/j.nima.2011.04.057
    [6] Rosenzweig J B, Valloni A, Alesini D, et al. Design and application of an X-band hybrid photo injector[J]. Nuclear Instruments Methods in Physics Research Section A, 2011, 657: 107-113. doi: 10.1016/j.nima.2011.05.046
    [7] Fukasawa, Badakov H, O’Shea B D, et al. Beam dynamics and RF cavity design of a standing/traveling-wave hybrid photoinjector for high brightness beam generation[C]// Proc of PAC. 2009: 4434-4436.
    [8] Rosenzweig J B, Alesini D, Boni A, et al. Beam dynamics in a hybrid standing wave[J]. AIP Conference Proceedings, 2006, 877: 635. doi: 10.1063/1.2409195
    [9] Hüning M, Schmitz M, Libig C. An electron linac injector with a hybrid buncher structure[C]//Proceedings of LINAC. 2010.
    [10] Nie Y C, Liebig C, Hüning M, et al. Tuning of 2.998 GHz S-band hybrid buncher for injector upgrade of LINAC II at DESY[J]. Nuclear Instruments Methods in Physics Research Section A, 2014, 761: 69-78. doi: 10.1016/j.nima.2014.05.043
    [11] Pei Shilun, Xiao Ouzheng. Studies on an S-band bunching system with hybrid buncher[C]//Proc of IPAC. 2013: 1121-1122.
    [12] Pei Shilun, Gao Bin. Studies on the S-band bunching system with the hybrid bunching-accelerating structure[J]. Nuclear Instruments Methods in Physics Research Section A, 2018, 888: 64-69. doi: 10.1016/j.nima.2018.01.011
    [13] Chi Yunlong, Pei Shilun, Pei Guoxi, et al. Progress on the construction of the 100 MeV/100 kW electron linac for the NSCKIPT neutron source[J]. Chinese Physics C, 2014, 38: 047005. doi: 10.1088/1674-1137/38/4/047005
    [14] Pei Shilun, Chi Yunlong, Wang Shuhong, et al. Beam dynamics studies on the 100 MeV/100 kW electron linear accelerator for NSCKIPT neutron source[J]. Chinese Physics C, 2012, 36: 653-660. doi: 10.1088/1674-1137/36/7/015
    [15] Billen J B, Young L M. Poisson SUPERFISH[M]. LA-UR-96-1834, 2006.
    [16] Gao Bin, Pei Shilun, Chi Yunlong. Design studies on an S-band hybrid accelerating structure[C]//13th Symposium on Accelerator Physics. 2017:92-95.
    [17] Zhao Shiqi, Pei Shilun, Gao Bin, et al. Field distribution measurement and tuning of the hybrid buncher[J]. High Power Laser and Particle Beams, 2017, 29: 065104.
    [18] Holtkamp N, Khabiboulline T, Dohlus M. Tuning of a 50-cell constant gradient S-band traveling wave accelerating structure by using a nonresonant perturbation method[R]. DESY Report M-95-02, 1995.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1246
  • HTML全文浏览量:  281
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12
  • 修回日期:  2020-10-19
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回