Development of S-band hybrid bunching-accelerating structure prototype
-
摘要: Hybrid聚束-加速结构是把驻波预聚束器、行波聚束器和标准加速管集成到一起的新型RF结构。简述了对S波段Hybrid聚束-加速结构样机的束流动力学优化和微波设计结果,解释了Hybrid结构导致发射度增长的原因,对此样机进行了射频低功率测试。样机的冷测结果与RF设计结果一致性很好。在冷测频率2 855.21 MHz处,实测S11小于−45 dB,腔间相移偏差小于±2°,VSWR≤1.2对应的带宽大于5 MHz,轴向场分布完全满足动力学要求。
-
关键词:
- 聚束系统 /
- Hybrid聚束-加速结构 /
- 非谐振微扰法 /
- 反射相位法 /
- 低功率测试
Abstract: Hybrid bunching-accelerating structure (HBaS) is a novel RF structure integrating a standing-wave(SW) pre-buncher (PB), a traveling-wave (TW) buncher (B) and a standard accelerating structure together. This paper presents the design results, including beam dynamic optimization, microwave design and the cold test of the S-band HBaS prototype, and explicates the reason of transverse emittance increasement caused by the hybrid structure. The low RF power results are in good agreement with the RF design. The measured S11 at operation frequency is less than −45 dB, the phase shift deviation is less than ±2° and the bandwidth is more than 5 MHz (VSWR≤1.2). The axis field distribution fully meets the dynamic requirements. -
表 1 加速单元排布方案
Table 1. β value for the accelerating cells
variant β value for the cells in the SW section $ {E}_{\rm{SW}}/{E}_{\rm{TW}} $ β value for the cells in the TW section SW1 SW2 TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8 1 – – – 0.75 0.75 0.75 1 1 1 1 1 2 1.26 0.74 0.437 0.75 0.75 0.75 1 1 1 1 1 3 – – – 0.75 0.75 0.75 0.75 1 1 1 1 4 1.26 0.74 0.44 0.75 0.75 0.75 0.75 1 1 1 1 5 – – – 0.75 0.75 0.75 0.88 0.92 0.95 1 1 6 1.26 0.74 0.425 0.75 0.75 0.75 0.88 0.92 0.95 1 1 表 2 动力学模拟结果
Table 2. Beam dynamic results for the bunching system
variant capturing efficiency/% ${E}_{ {\rm{ave} }}$/MeV trans efficiency/% $ {E}_{{\rm{ave}}} $/MeV trans efficiency/% $ {E}_{{\rm{ave}}} $/MeV $ \delta E $/MeV bunching system exit chicane system exit linac exit 1 78.9 11.1 51.4 11.8 51.4 101.2 ±3.9 2 84.6 11.6 66.5 11.6 66.5 100.6 ±4.0 3 83.7 10.9 70.4 11.2 70.4 94.8 ±9.9 4 89.1 12.3 71.0 12.3 71.0 101.4 ±3.9 5 81.6 11.2 70.4 11.5 70.4 95 ±10.1 6 87.4 12.3 72.8 12.3 72.8 101. ±3.9 表 3 Hybrid聚束-加速结构动力学要求
Table 3. Dynamic requirements for the HBaS
β values for the cells in the SW section ESW/ETW β values for the cells in the TW section SW1 SW2 TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8~42 1.26 0.74 0.44 0.75 0.75 0.75 0.88 0.92 0.95 1 1 -
[1] Ren W, Liu Y, Wu W, et al. The BEPC R&D Report, Part I: Injector[R]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences 1989. [2] Pisen A, Rinolfi L. A new bunching system for the LEP injector linac[R]. CERN PS90-58 (LP), 1990. [3] Zhao Minhua, Lin Guoqiang, Zhong S P, et al. Preliminary design report of SSRF linac[R]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2004. [4] Kulkarni N S, Dhingra R, Kumar V. Physics design of a 10 MeV, 6 kW travelling wave electron linac for industrial applications[J]. Pramana J Phys, 2016, 87: 74. doi: 10.1007/s12043-016-1279-6 [5] Spataro B, Valloni A, Alesini D, et al. RF properties of a X-band hybrid photoinjector[J]. Nuclear Instruments Methods in Physics Research Section A, 2011, 657: 99-106. doi: 10.1016/j.nima.2011.04.057 [6] Rosenzweig J B, Valloni A, Alesini D, et al. Design and application of an X-band hybrid photo injector[J]. Nuclear Instruments Methods in Physics Research Section A, 2011, 657: 107-113. doi: 10.1016/j.nima.2011.05.046 [7] Fukasawa, Badakov H, O’Shea B D, et al. Beam dynamics and RF cavity design of a standing/traveling-wave hybrid photoinjector for high brightness beam generation[C]// Proc of PAC. 2009: 4434-4436. [8] Rosenzweig J B, Alesini D, Boni A, et al. Beam dynamics in a hybrid standing wave[J]. AIP Conference Proceedings, 2006, 877: 635. doi: 10.1063/1.2409195 [9] Hüning M, Schmitz M, Libig C. An electron linac injector with a hybrid buncher structure[C]//Proceedings of LINAC. 2010. [10] Nie Y C, Liebig C, Hüning M, et al. Tuning of 2.998 GHz S-band hybrid buncher for injector upgrade of LINAC II at DESY[J]. Nuclear Instruments Methods in Physics Research Section A, 2014, 761: 69-78. doi: 10.1016/j.nima.2014.05.043 [11] Pei Shilun, Xiao Ouzheng. Studies on an S-band bunching system with hybrid buncher[C]//Proc of IPAC. 2013: 1121-1122. [12] Pei Shilun, Gao Bin. Studies on the S-band bunching system with the hybrid bunching-accelerating structure[J]. Nuclear Instruments Methods in Physics Research Section A, 2018, 888: 64-69. doi: 10.1016/j.nima.2018.01.011 [13] Chi Yunlong, Pei Shilun, Pei Guoxi, et al. Progress on the construction of the 100 MeV/100 kW electron linac for the NSCKIPT neutron source[J]. Chinese Physics C, 2014, 38: 047005. doi: 10.1088/1674-1137/38/4/047005 [14] Pei Shilun, Chi Yunlong, Wang Shuhong, et al. Beam dynamics studies on the 100 MeV/100 kW electron linear accelerator for NSCKIPT neutron source[J]. Chinese Physics C, 2012, 36: 653-660. doi: 10.1088/1674-1137/36/7/015 [15] Billen J B, Young L M. Poisson SUPERFISH[M]. LA-UR-96-1834, 2006. [16] Gao Bin, Pei Shilun, Chi Yunlong. Design studies on an S-band hybrid accelerating structure[C]//13th Symposium on Accelerator Physics. 2017:92-95. [17] Zhao Shiqi, Pei Shilun, Gao Bin, et al. Field distribution measurement and tuning of the hybrid buncher[J]. High Power Laser and Particle Beams, 2017, 29: 065104. [18] Holtkamp N, Khabiboulline T, Dohlus M. Tuning of a 50-cell constant gradient S-band traveling wave accelerating structure by using a nonresonant perturbation method[R]. DESY Report M-95-02, 1995.