留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于螺线管扫描法进行电磁叠加场中热发射度测量的仿真分析

范培亮 何小中 杨柳 魏涛 江孝国 李一丁 张小丁 王科 杨兴林

范培亮, 何小中, 杨柳, 等. 基于螺线管扫描法进行电磁叠加场中热发射度测量的仿真分析[J]. 强激光与粒子束, 2021, 33: 024003. doi: 10.11884/HPLPB202133.200197
引用本文: 范培亮, 何小中, 杨柳, 等. 基于螺线管扫描法进行电磁叠加场中热发射度测量的仿真分析[J]. 强激光与粒子束, 2021, 33: 024003. doi: 10.11884/HPLPB202133.200197
Fan Peiliang, He Xiaozhong, Yang Liu, et al. Simulation of the solenoid scan method used in overlapping field for thermal emittance measurement[J]. High Power Laser and Particle Beams, 2021, 33: 024003. doi: 10.11884/HPLPB202133.200197
Citation: Fan Peiliang, He Xiaozhong, Yang Liu, et al. Simulation of the solenoid scan method used in overlapping field for thermal emittance measurement[J]. High Power Laser and Particle Beams, 2021, 33: 024003. doi: 10.11884/HPLPB202133.200197

基于螺线管扫描法进行电磁叠加场中热发射度测量的仿真分析

doi: 10.11884/HPLPB202133.200197
基金项目: 国家重点研发计划项目(2016YFA0401904);国家自然科学基金项目(11805191,11705183,11705184)
详细信息
    作者简介:

    范培亮(1986—),男,助理研究员,从事光阴极注入器研究;fanpeiliang@163.com

    通讯作者:

    杨 柳(1985—),男,助理研究员,从事加速器研究;yyperf57@163.com

  • 中图分类号: O59

Simulation of the solenoid scan method used in overlapping field for thermal emittance measurement

  • 摘要: 在一种猝发高重频的X射线自由电子激光(XFEL)装置中,由于受到光阴极注入器内补偿螺线管与电子枪之间特殊结构的限制,阴极附近电场与磁场为叠加状态。实验中需要对阴极热发射度进行测量,而测量热发射度常用的螺线管扫描法基于几何发射度不变的前提,无法直接应用于电磁场叠加的结构。针对这一问题,考虑到归一化过程可以剔除电场对发射度的影响,基于此,研究归一化相空间中应用的螺线管扫描法,并通过仿真计算与分析,最终证明该方法适用于电磁叠加场中阴极热发射度的测量。
  • 图  1  阴极附近的电磁场分布与归一化RMS发射度在束团电荷量0.5 pC时的演化

    Figure  1.  Electric field and magnetic field near the photocathode and normalized RMS emittance evolution for 0.5 pC bunch charge

    图  2  z=1.3 m 与z=2.0 m 处的仿真结果与拟合结果

    Figure  2.  Simulation data and the curve fitting data at 1.3 m and 2.0 m

    表  1  模拟的初始参数

    Table  1.   Parameters used in the simulation

    single bunch charge/pC electric field on cathode/(MV/m) laser pulse length (FWHM)/ps laser RMS spot size/mm transverse distribution (uniform) longitudinal distribution
    (flat top)
    0.5 60 20 0.2
    下载: 导出CSV

    表  2  ASTRA仿真结果与拟合结果

    Table  2.   ASTRA simulation results and curve fitting results

    parameterresult from ASTRAcurve fitting result at 1.3 mcurve fitting result at 2.0 m
    normalized RMS emittance/mm·mrad0.25030.25060.2506
    normalized $\;{\beta _0}$0.15980.15970.1597
    下载: 导出CSV
  • [1] Altarelli M, Brinkmann R, Chergui M, et al. Technical design report of the European X-ray free-electron laser[R]. DESY Report No. 2006-097, 2006.
    [2] Arthur J, Anfinrud P, Audebert P, et al. LCLS conceptual design[R]. Report No. SLAC-R-593, 2002.
    [3] Russell S J, Carlsten B E, Duffy L D, et al. MaRIE XFEL pre-conceptual reference design injector[R]. LA-UR-15-21963, 2015.
    [4] Kwang-Je K I M. RF and space-charge effects in laser-driven RF electron guns[J]. Nuclear Instruments and Methods in Physics Research A, 1989, 275: 201-218. doi: 10.1016/0168-9002(89)90688-8
    [5] Carlsten B E. New photoelectic injector design for the Los Alamos National Laboratory XUV FEL accelerator[J]. Nuclear Instruments and Methods in Physics Research A, 1989, 28: 313-319.
    [6] Luiten O J, van der Geer S B, de Loos M J, et al. How to realize uniform three-dimensional ellipsoidal electron bunches[J]. Phys Rev Lett, 2004, 93: 094802. doi: 10.1103/PhysRevLett.93.094802
    [7] Yusof Z M, Conde M E, Wei Gai. Schottky-enabled photoemission in a RF accelerator photoinjector: possible generation of ultralow transverse thermal-emittance electron beam[J]. Phys Rev Lett, 2004, 93: 114801. doi: 10.1103/PhysRevLett.93.114801
    [8] Miltchev V. Modelling the transverse phase space and emittance studies at PITZ[C]//Proceedings of the 27th FEL Conference. 2005: 556-559.
    [9] Anderson S G, Rosenzweig J B. Space-charge effects in high brightness electron beam emittance measurements[J]. Phys Rev ST Accel Beams, 2002, 5: 014201. doi: 10.1103/PhysRevSTAB.5.014201
    [10] Kim Y, Andersson A, Dach M, et al. Low thermal emittance measurements at the PSI-XFEL low emittance gun test facility[C]//Proceedings of FEL08. 2008: 110-113.
    [11] Graves W S, DiMauro L F, Heese R, et al. DUVFEL photoinjector dynamics: measurement and simulation[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 2230-2232.
    [12] Sannibale F, Filippetto D, Cork C, et al. Recent result from the APEX project at LBNL[C]//Proceedings of the PAC.2013: 709-713.
    [13] Xiang Dao, Du Yingchao, Yan Lixin, et al. Transverse phase space tomography using a solenoid applied to a thermal emittance measurement[J]. Phys Rev ST Accel Beams, 2009, 12: 022801. doi: 10.1103/PhysRevSTAB.12.022801
    [14] Chao A W, Tigner M. Handbook of accelerator physics and engineering[M]. 3rd Ed. World Scientific Publishing, 2006: 71-75.
    [15] Kobayashi S, Nomizu K. Foundations of differential geometry[M]. John Wiley & Sons, 1963.
    [16] Flottmann K. A space charge tracking algorithm[R]. https://www.desy.de/~mpyflo/Astra_manual/Astra-Manual_V3.2.pdf.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  1300
  • HTML全文浏览量:  264
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2020-10-21
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回