Development of digital self-excited loop in vertical tests of superconducting cavity
-
摘要: 介绍北京大学垂直测试系统的数字化自激励环路系统,重点分析了实际测试中避免多单元(cell)超导腔模式串扰的方法以及偏离四倍频采样对信号幅度和相位的影响。该系统运行稳定可靠,可有效区分1.3 GHz 9-cell超导腔
$ {\rm{{\text{π}}}} $ 模与$ 8{\rm{{\text{π}}}}/9 $ 模,解决了多cell超导腔测试中模式串扰问题。分析了超导腔自激励环路在垂直测试中的应用,介绍了北京大学垂直测试系统的数字化自激励环路,采用上下变频方案的射频前端和包括有限脉冲响应滤波器的数字算法,系统简洁扩展性强。重点分析了实际测试中避免多cell超导腔模式串扰的方法以及偏离四倍频采样对信号幅度和相位的影响。在多种不同频率超导腔的垂直测试中该系统运行稳定可靠,可有效区分1.3 GHz 9-cell超导腔$ {\text{π}} $ 模与$ 8{\rm{{\text{π}}}}/9 $ 模,解决了多cell超导腔测试中模式串扰问题。Abstract: Vertical tests are very important for superconducting cavity after its post-processing. The aim is to obtain the quality factor versus accelerating gradient curve to evaluate a cavity’s performance. Because of its narrow bandwidth, the superconducting cavity should work stably in the resonant state during the vertical tests. The digital self-excited loop system for the vertical test stand of Peking University is introduced in this paper. The methods of avoiding crosstalk during multi-cell superconducting cavity test were brought out. The influence of deviation from quadruple frequency sampling on amplitude and phase was analyzed. The system is stable and reliable, can effectively distinguish$ {\text{π}} $ mode from$ 8{\rm{{\text{π}}}}/9 $ mode of the 1.3 GHz 9-cell superconducting cavity, and solve the problem of mode crosstalk in multi-cell superconducting cavity test.-
Key words:
- superconducting cavity /
- vertical test /
- digital /
- self-excited loop
-
-
[1] Aghababyan A, Altarelli M, Altucci C, et al. XFEL: The European X-ray free-electron laser — technical design report[M]. Germany: DESY XFEL Project Group. 2006. [2] Galayda J N. LCLS-II: A high power upgrade to the LCLS[C] //Proc of IPAC. 2018: 18-23. [3] Zhu zhiyuan, Zhao Zhentang, Wang Dong, et al. SCLF: an 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai[C] //Proc of FEL. 2017: 182-184. [4] Kostin D, Möller W D, Sekutowicz J, et al. Tesla type 9-cell cavities continuous wave tests[C]//Proc of SRF. 2009: 338-341. [5] Allison T, Delayen J R, Hovater C, et al. A digital self excited loop for accelerating cavity field control[C]//Proc of PAC. 2007: 2481-2483. [6] Ben-Zvi I. SRF cavity testing using a FPGA self excited loop[OL]. https://cds.cern.ch/record/2320432. [7] 侯洪涛. 500 MHz 单cell 超导高频腔测试技术研究[D]. 上海: 中国科学院上海应用物理研究所, 2010: 63-64.Hou Hongtao. Study on testing of 500 MHz single cell superconducting radio frequency cavities[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2010: 63-64 [8] Chang Wei, He Yuan, Wen Lianghua, et al. A vertical test system for China-ADS project injector superconducting cavities[J]. Chinese Physics C, 2014, 38: 057001. doi: 10.1088/1674-1137/38/5/057001 [9] 张娟, 戴建枰, 黄泓, 等. 基于Labview 的超导腔测试数据采集系统[J]. 核电子学与探测技术, 2013, 33(9):1098-1103. (Zhang Juan, Dai Jianping, Huang Hong, et al. Data acquisition system of superconducting cavity test based on Labview[J]. Nuclear Electronics & Detection Technology, 2013, 33(9): 1098-1103 doi: 10.3969/j.issn.0258-0934.2013.09.014 [10] 杨际森, 潘卫民, 王洪磊, 等. 超导腔数字自激垂直测试系统[J]. 强激光与粒子束, 2020, 32:045106. (Yang Jisen, Pan Weimin, Wang Honglei, et al. Digital self-excited vertical test system of superconducting cavity[J]. High Power Laser and Particle Beams, 2020, 32: 045106 [11] Liu Rong, Wang Zheng, Pan Weimin, et al. FPGA-based amplitude and phase detection in DLLRF[J]. Chinese Physics C, 2009, 33(7): 594-598. doi: 10.1088/1674-1137/33/7/017