留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属面曝光选区激光熔化原理装置及试验研究

王晨光 沈显峰 王国伟 吴华玲 吴鸿飞 王开甲 陈金明

王晨光, 沈显峰, 王国伟, 等. 金属面曝光选区激光熔化原理装置及试验研究[J]. 强激光与粒子束, 2021, 33: 029001. doi: 10.11884/HPLPB202133.200221
引用本文: 王晨光, 沈显峰, 王国伟, 等. 金属面曝光选区激光熔化原理装置及试验研究[J]. 强激光与粒子束, 2021, 33: 029001. doi: 10.11884/HPLPB202133.200221
Wang Chenguang, Shen Xianfeng, Wang Guowei, et al. Principle device and experimental research of surface exposure selective laser melting for metal powder[J]. High Power Laser and Particle Beams, 2021, 33: 029001. doi: 10.11884/HPLPB202133.200221
Citation: Wang Chenguang, Shen Xianfeng, Wang Guowei, et al. Principle device and experimental research of surface exposure selective laser melting for metal powder[J]. High Power Laser and Particle Beams, 2021, 33: 029001. doi: 10.11884/HPLPB202133.200221

金属面曝光选区激光熔化原理装置及试验研究

doi: 10.11884/HPLPB202133.200221
基金项目: 四川省科技计划项目(2018GZ0535)
详细信息
    作者简介:

    王晨光(1994—),男,硕士研究生,从事金属选区激光熔化增材制造方面的研究工作;wcg_0619@163.com

    通讯作者:

    沈显峰(1977—),男,博士,高级工程师,从事高能束流加工技术方面的研究工作;xianfeng_shen@163.com

  • 中图分类号: TN249

Principle device and experimental research of surface exposure selective laser melting for metal powder

  • 摘要: 与点扫描方式相比,面曝光选区激光熔化因具有成形效率高、残余应力水平低等优势,而成为极具发展前景的新一代选区激光熔化增材制造技术的发展方向。利用波长为915 nm的二极管连续激光器作为光源,结合电寻址反射式纯相位液晶空间光调制器,搭建了新一代面曝光选区激光熔化增材制造原理装置平台。获得了“○”形样式的面光斑曝光,基于光敏纸和低熔点金属粉末材料进行面曝光熔化成形并获得了样品,实现了面曝光选区激光熔化的原理性实验验证。
  • 图  1  面曝光选区激光熔化装置

    Figure  1.  Device of selective laser melting in surface exposure

    图  2  面曝光选区激光熔化原理

    Figure  2.  Principle of selective laser melting in surface exposure

    图  3  面曝光选区激光熔化工艺流程

    Figure  3.  Technological process of selective laser melting in surface exposure

    图  4  光路系统设计

    Figure  4.  Design of optical path system

    图  5  光源设计

    Figure  5.  Optical source design

    图  6  LC-SLM的原理

    Figure  6.  Principle of LC-SLM

    图  7  光束入射规则

    Figure  7.  Beam incidence rule

    图  8  面曝光选区激光熔化实验装置

    Figure  8.  Experimental device of surface exposure selective laser melting

    图  9  激光器电流-功率关系曲线

    Figure  9.  Current-power relationship curve of the laser

    图  10  预处理“○”光斑图案

    Figure  10.  Preprocessing pattern of “○” spot

    图  11  “○”相位调制图

    Figure  11.  “○” phase modulation diagram

    图  12  光敏纸面曝光熔化样品

    Figure  12.  Surface exposure melting sample of photosensitive paper

    图  13  SnBi58合金粉末面曝光熔化样品

    Figure  13.  Melting sample of SnBi58 alloy powder in surface exposure

  • [1] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. (Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(10): 2690-2698
    [2] Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2013, 57(3): 133-164.
    [3] Roehling J D, Smith W L, Roehling T T, et al. Reducing residual stress by selective large-area diode surface heating during laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2019, 28: 228-235. doi: 10.1016/j.addma.2019.05.009
    [4] Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228): 1349-1352. doi: 10.1126/science.aaa2397
    [5] 胥光申, 杨根. 面曝光快速成形系统制作工艺参数的优化研究[J]. 机械科学与技术, 2015, 34(2):224-228. (Xu Guangshen, Yang Gen. Optimization of the processing parameters of mask projection stereolithography system[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(2): 224-228
    [6] 王伊卿, 贾志洋, 赵万华, 等. 面曝光快速成形关键技术及研究现状[J]. 机械设计与研究, 2009, 25(2):96-100. (Wang Yiqing, Jia Zhiyang, Zhao Wanhua, et al. The key technology and research status of mask projection stereolithography[J]. Journal of Machine Design and Research, 2009, 25(2): 96-100
    [7] 王赫, 兰红波, 钱垒, 等. 连续面曝光陶瓷3D打印[J]. 中国科学: 技术科学, 2019, 49(06):681-689. (Wang He, Lan Hongbo, Qian Lei, et al. Continuous DLP ceramic 3D printing[J]. Scientia Sinica Technologica, 2019, 49(06): 681-689 doi: 10.1360/N092018-00338
    [8] Zhou Chi, Chen Yong. Additive manufacturing based on optimized mask video projection for improved accuracy and resolution[J]. Journal of Manufacturing Processes, 2012, 14(2): 107-118. doi: 10.1016/j.jmapro.2011.10.002
    [9] Matthews M J, Guss G, Drachenberg D R, et al. Diode-based additive manufacturing of metals using an optically-addressable light valve[J]. Optics Express, 2017, 25(10): 11788-11800. doi: 10.1364/OE.25.011788
    [10] 陈重琳. 利用液晶空间光调制器将激光整形为平顶光束的研究[D]. 武汉: 武汉理工大学, 2019: 26-27.

    Chen Chonglin. Investigation on flat-top laser beam shaping using liquid crystal spatial light modulator[D]. Wuhan: Wuhan University of Technology, 2019: 26-27
    [11] 张洪鑫. 相位型液晶空间光调制器特性测试方法及波前校正研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 22-26.

    Zhang Hongxin. Research of the performance measurement and wavefront correction application of phase-only liquid crystal spatial light modulator[D]. Harbin: Harbin Institute of Technology, 2009: 22-26
    [12] Li Jiangning, Tang Yue, KuangZheng, et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators[J]. Optics and Lasers in Engineering, 2019, 112: 59-67. doi: 10.1016/j.optlaseng.2018.09.002
  • 加载中
图(13)
计量
  • 文章访问数:  1783
  • HTML全文浏览量:  399
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30
  • 修回日期:  2020-10-15
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回