留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自触发驱动的全固态Marx发生器

饶俊峰 李恩成 王永刚 姜松 李孜

饶俊峰, 李恩成, 王永刚, 等. 自触发驱动的全固态Marx发生器[J]. 强激光与粒子束, 2021, 33: 025001. doi: 10.11884/HPLPB202133.200223
引用本文: 饶俊峰, 李恩成, 王永刚, 等. 自触发驱动的全固态Marx发生器[J]. 强激光与粒子束, 2021, 33: 025001. doi: 10.11884/HPLPB202133.200223
Rao Junfeng, Li Encheng, Wang Yonggang, et al. Self-triggering all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 025001. doi: 10.11884/HPLPB202133.200223
Citation: Rao Junfeng, Li Encheng, Wang Yonggang, et al. Self-triggering all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 025001. doi: 10.11884/HPLPB202133.200223

自触发驱动的全固态Marx发生器

doi: 10.11884/HPLPB202133.200223
基金项目: 国家自然科学基金青年基金项目(51707122);国家重点研发计划数字诊疗专项(2019YFC0119100);上海市青年科技英才扬帆计划(19YF1435000)
详细信息
    通讯作者:

    饶俊峰(1985—),男,博士,副教授,主要从事全固态高压脉冲发生器和低温等离子体应用等方面的研究工作;jfrao@usst.edu.cn

  • 中图分类号: TM832

Self-triggering all-solid-state Marx generator

  • 摘要: 随着全固态高压脉冲发生器在材料改性、生物医学和工业等领域上的广泛应用,全固态脉冲发生器正朝着小型化、智能化和模块化方向发展。为了进一步减小电源的体积、降低成本,提出了一种自触发驱动的正极性全固态Marx发生器的拓扑。只需提供一路隔离信号控制一级放电开关管的导通和关断,通过级间电容对相邻级的放电管门极自动充电和放电,使其依次导通和关断。这种拓扑使得Marx发生器中的多个开关管的驱动电路简单很多,无需提供隔离供电的多路驱动电源,且避免了开关的动态、静态均压问题。基于这种拓扑搭建了一台17级的正极性Marx发生器样机,且电压幅值和脉宽都连续可调,在10 kΩ纯阻性负载上输出10 kV、重复频率100 Hz的正极性高压脉冲,脉冲前沿约为328 ns。样机体积小巧、工作稳定,验证了该方案的可行性。
  • 图  1  正极性自触发Marx拓扑结构

    Figure  1.  The topology of the self-triggering Marx generator

    图  2  阻容串联负载下的充电回路和阻性负载下的充电回路

    Figure  2.  The charging circuit with resistor-capacitor series load and resistive load

    图  3  自触发第一级驱动回路和自触发第二级驱动回路

    Figure  3.  The turn-on process of self-triggering drive circuit for the first stage and the second stage

    图  4  自触发第一级关断回路和自触发第二级关断回路

    Figure  4.  The turn-off process of self-triggering circuit for the first stage and the second stage

    图  5  5级正极性自触发驱动Marx发生器仿真电路

    Figure  5.  Simulation circuit of 5-stage positive self-triggering Marx generator

    图  6  5级驱动电压对比图

    Figure  6.  Comparison of 5-stage drive voltage

    图  7  不同级数输出波形

    Figure  7.  Voltage waveforms generated by different number of stages

    图  8  17级自触发驱动的Marx发生器实物图

    Figure  8.  The photo of the 17-stage self-triggering Marx generator

    图  9  第5级开关的自触发的驱动电压

    Figure  9.  The self-triggering driving voltage over the switch in the 5th stage

    图  10  17级自触发驱动的Marx发生器的输出的单个脉冲电压波形和100 Hz重频电压波形

    Figure  10.  The output voltage waveform of a single pulse and 100 Hz repetitive pulses generated by the 17-stage self-trigger Marx generator

    图  11  17级自触发驱动的Marx发生器在10 kΩ纯阻性负载上的电压波形

    Figure  11.  Voltage waveforms over 10 kΩ resistor load

    图  12  正极性自触发驱动的Marx发生器在阻容串联负载下的输出电压波形

    Figure  12.  The waveform of the voltage over capacitive load driven by the positive self-triggering Marx generator

    表  1  电路参数

    Table  1.   Circuit parameters

    input DC voltage/Vsignal width/μsstorage capacitance of Cn/μFgate capacitance of Cg(n−1)/nFdriving capacitance of Cd(n−1)/pFgate series resistance/Ωgate parallel resistance/kΩresistance of load/kΩ
    60011.474.7150125.110
    下载: 导出CSV
  • [1] 刘钟阳, 吴彦, 王宁会. 双极性窄脉冲介质阻挡放电合成臭氧的研究[J]. 高电压技术, 2001, 27(2):28-29. (Liu Zhongyang, Wu Yan, Wang Ninghui. Experimental study on ozone synthesis in dielectric barrier discharge triggered by bipolar narrow pulse[J]. High Voltage Engineering, 2001, 27(2): 28-29 doi: 10.3969/j.issn.1003-6520.2001.02.013
    [2] Samaranayake W J M, Miyahara Y, Namihira T, et al. Pulsed streamer discharge characteristics of ozone production in dry air[J]. IEEE Trans Dielectrics and Electrical Insulation, 2002, 7(2): 254-260.
    [3] Roupassov D V, Nikipelov A A, Nudnova M M, et al. Flow separation control by plasma actuator with nanosecond pulse periodic discharge[C]//International Conference on Gas Discharges and Their Applications. 2008(17): 609-612.
    [4] Pendleton S J, Kastner J, Gutmark E, et al. Surface streamer discharge for plasma flow control using nanosecond pulsed power[J]. IEEE Trans Plasma Science, 2011, 39(11): 2072-2073. doi: 10.1109/TPS.2011.2138166
    [5] 袁雪林, 梁步阁, 吕波, 等. 探地雷达高功率高稳定度脉冲源设计[J]. 强激光与粒子束, 2007, 19(10):1689-1692. (Yuan Xuelin, Liang Buge, Lü Bo, et al. High-power and high-stability pulser for ground penetrating radar[J]. High Power Laser and Particle Beams, 2007, 19(10): 1689-1692
    [6] Zhang C H, Lü P, Zhao Y P, et al. Xenon discharge-produced plasma radiation source for EUV lithography[J]. IEEE Trans Industry Applications, 2010, 46(4): 1661-1666. doi: 10.1109/TIA.2010.2051059
    [7] Chen X, Zhuang J, Kolb J F, et al. Long term survival of mice with hepatocellular carcinoma after pulse power ablation with nanosecond pulsed electric fields[J]. Technol Cancer Res Treat, 2012, 11(1): 83-93. doi: 10.7785/tcrt.2012.500237
    [8] 房俊龙, 朴在林, 张喜海. 30 kV液体食品灭菌用高电压脉冲发生器的设计[J]. 农机化研究, 2006(8):95-97. (Fang Junlong, Pu Zailin, Zhang Xihai. Design of 30 kV high-voltage pulse generator for sterilization in liquid food[J]. Journal of Agricultural Mechanization Research, 2006(8): 95-97 doi: 10.3969/j.issn.1003-188X.2006.06.035
    [9] 饶俊峰, 洪凌锋, 郭龙跃, 等. 多路Marx并联高压脉冲电源研究[J]. 强激光与粒子束, 2020, 32:055001. (Rao Junfeng, Hong Lingfeng, Guo Longyue, et al. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser & Particle Beams, 2020, 32: 055001
    [10] Liu Ying, Fan Rui, Zhang Xiaoning, et al. Bipolar high voltage pulse generator without H-bridge based on cascade of positive and negative Marx generators[J]. IEEE Trans Dielectrics and Electrical Insulation, 2019, 26(2): 476-483. doi: 10.1109/TDEI.2018.007861
    [11] Hess H L, Baker R J. Transformerless capacitive coupling of gate signals for series operation of power MOS devices[J]. IEEE Trans Power Electronics, 2000, 15(5): 923-930. doi: 10.1109/63.867682
    [12] 张春朋, 张树卿, 赵国亮. 串联IGBT动态均压方法综述[J]. 电工技术学报, 2013, 28(s0):197-202. (Zhang Chunpeng, Zhang Shuqing, Zhao Guoliang. Review of dynamic voltage balancing methods for series-connected IGBTs[J]. Transactions of China Electrotechnical Society, 2013, 28(s0): 197-202
    [13] Lu Ting, Zhao Zhengming, Ji Shiqi, et al. Active clamping circuit with status feedback for HV-IGBT[C]//International Conference on Electrical Machines and Systems (ICEMS). 2012: 1-5.
    [14] Lei Pang, Tian Junlong, He Kun, et al. A compact series-connected SiC MOSFETs module and its application in high voltage nanosecond pulse generator[J]. IEEE Trans Industrial Electronics, 2019, 66(12): 9238-9247. doi: 10.1109/TIE.2019.2891441
    [15] Li Rong. The design of new compact Marx generator[J]. Chinese Journal of Electronics, 2018, 27(6): 1305-1308. doi: 10.1049/cje.2018.09.017
    [16] Rao Junfeng, Zhang Wei, Jiang Song, et al. Nanosecond pulse generator based on cascaded avalanche transistors and Marx circuits[J]. IEEE Trans Dielectrics and Electrical Insulation, 2019, 26(2): 374-380. doi: 10.1109/TDEI.2018.007710
    [17] Zeng Weirong, Yao Chenguo, Dong Shoulong, et al. Self-triggering high-frequency nanosecond pulse generator[J]. IEEE Trans Power Electronics, 2020, 35(8): 8002-8012. doi: 10.1109/TPEL.2020.2967183
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  2999
  • HTML全文浏览量:  962
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30
  • 修回日期:  2020-09-30
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回