留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子推力器束流引出状态对栅极刻蚀的影响

孙明明 耿海 杨俊泰 岳士超 张文涛

孙明明, 耿海, 杨俊泰, 等. 离子推力器束流引出状态对栅极刻蚀的影响[J]. 强激光与粒子束, 2021, 33: 024005. doi: 10.11884/HPLPB202133.200229
引用本文: 孙明明, 耿海, 杨俊泰, 等. 离子推力器束流引出状态对栅极刻蚀的影响[J]. 强激光与粒子束, 2021, 33: 024005. doi: 10.11884/HPLPB202133.200229
Sun Mingming, Geng Hai, Yang Juntai, et al. Influence of ion beam perveance condition on grids erosion for ion thruster[J]. High Power Laser and Particle Beams, 2021, 33: 024005. doi: 10.11884/HPLPB202133.200229
Citation: Sun Mingming, Geng Hai, Yang Juntai, et al. Influence of ion beam perveance condition on grids erosion for ion thruster[J]. High Power Laser and Particle Beams, 2021, 33: 024005. doi: 10.11884/HPLPB202133.200229

离子推力器束流引出状态对栅极刻蚀的影响

doi: 10.11884/HPLPB202133.200229
基金项目: 国家自然科学基金项目(61901202,61901204);十三五星箭可靠性增长项目(ZKCP0701);国防科工局稳定支持重点实验室基金项目;民用航天预研项目(D010509)
详细信息
    作者简介:

    孙明明(1985—),男,博士,高级工程师,主要从事空间电推进技术研究;smmhappy@163.com

  • 中图分类号: V439.4

Influence of ion beam perveance condition on grids erosion for ion thruster

  • 摘要: 为了研究30 cm离子推力器束流引出状态对栅极刻蚀的影响,建立了束流引出模型,并采用PIC-MCC方法对CEX离子造成的栅极腐蚀速率进行了计算,最后将计算结果与1500 h寿命试验结果进行比对分析。结果显示:束流正常聚焦时,在3 kW和5 kW两种工作模式下,加速栅和减速栅的质量刻蚀速率分别为(1.11~1.72)×10−15 kg/s及(1.22~1.26)×10−17 kg/s。在5 kW工况下,当屏栅上游等离子体密度达到4.03×1017 m−3时,束流出现欠聚焦现象,此时加速栅和减速栅的最大离子刻蚀速率分别为4.33×10−15 kg/s和4.02×10−15 kg/s;在3 kW工况下,当屏栅上游等离子体密度达到0.22×1017 m−3时,束流出现过聚焦现象,此时加速栅和减速栅的最大离子刻蚀速率分别为3.24×10−15 kg/s和5.01×10−15 kg/s。寿命试验结果表明,加速栅孔质量刻蚀速率的计算值与试验值比对误差较小,而由于束流离子对减速栅孔的直接轰击,导致减速栅孔刻蚀速率的计算值和试验值差异极大。经研究认为,对屏栅小孔采用变孔径设计,是降低当束流处于欠聚焦或过聚焦状态下,CEX离子造成加速栅孔和减速栅孔刻蚀速率,并提升推力器工作寿命的有效措施。
  • 图  1  离子束流引出过程示意图

    Figure  1.  Schematic diagram of the ion beam extraction process

    图  2  采用PIC-MCC方法的离子加速计算区域

    Figure  2.  Calculation region of ions acceleration based on PIC-MCC method

    图  3  不同工况下的CEX离子密度分布

    Figure  3.  CEX ion density in different work mode

    图  4  5 kW工况下的束流欠聚焦仿真结果

    Figure  4.  Simulation results of under perveance condition in 5 kW mode

    图  5  3 kW工况下束流过聚焦状态时的离子位置分布

    Figure  5.  Ions position distribution of over-perveance condition in 3 kW mode

    图  6  离子刻蚀后的加速栅小孔半径变化示意图

    Figure  6.  Radius of the accelerator grid hole after ion etched

    表  1  PIC-MCC方法的关键参数设置

    Table  1.   Parameters set for simulation by PIC-MCC method

    ${r_{{\rm{sc}}}}$/mm${r_{{\rm{ac}}}}$/mm${t_{{\rm{sc}}}}$/mm${t_{{\rm{ac}}}}$/mm${d_{{\rm{s - a}}}}$/mm${r_{{\rm{del}}}}$/mm${t_{{\rm{del}}}}$/mm${V_{{\rm{acc}}}}$/V
    0.950.550.400.5010.650.5−400
    ${V_{\rm{p}}}$/V${T_{\rm{i}}}$/K${T_{{\rm{eu}}}}$/eV${T_{{\rm{ed}}}}$/eV${n_{\rm{0}}}$/m−3${V_{{\rm{sc}}}}$/V${d_{{\rm{a - d}}}}$/mm${V_{{\rm{del}}}}$/V
    376004.51.5012000.90
    下载: 导出CSV

    表  2  离子推力器不同工作模式的输入条件

    Table  2.   Input parameters of ion thruster in different work mode

    work modeanode mass flow/(kg·s−1cathode mass flow/(kg·s−1total mass flow/(mg·s−1anode voltage/V
    3 kW1.970.382.3532
    5 kW5.370.265.6330.5
    下载: 导出CSV

    表  3  栅极上游中性原子密度分布

    Table  3.   Neutral density in upstream of the grids

    work mode${n_{\rm{0}}}$/m−3${n_{{\rm{01}}}}$/m−3anode voltage/Vscreen grid voltage/Vaccelerator grid voltage/V
    3 kW1.42×10178.75×1017321415−220
    5 kW3.36×10172.11×101830.51165−400
    下载: 导出CSV

    表  4  不同模式下的刻蚀速率仿真计算结果

    Table  4.   Simulation results of erosion velocity in different work mode

    work modeerosion velocity of acc. grid/(kg·s−1erosion velocity of dec. grid/(kg·s−1
    3 kW 1.11×10−15 1.22×10−17
    5 kW 1.72×10−15 1.26×10−17
    下载: 导出CSV
  • [1] Sun Mingming, Zheng Yi, Geng Hai. Grid gap variation of ion thruster during start-up in orbit[J]. IEEE Trans Plasma Science, 2020, 48(2): 455-461.
    [2] Hayakawa Y, Yoshida H, Miyazaki K, et al. Validation of an ion-thruster grid thermal model with experiments[R]. AIAA Paper 2010-6946.
    [3] Haag T. Mechanical design of carbon ion optics[R]. AIAA Paper 2005-4408.
    [4] Brophy J, Katz I, Polk J, et al. Numerical simulations of ion thruster accelerator grid erosion[R]. AIAA Paper 2002-4261.
    [5] Chien K R, Tighe W, Bond T, et al. An overview of electric propulsion at L-3 communications, Electron Technologies Inc[R]. AIAA Paper 2006-4322.
    [6] Goebel D, Martinez-Lavin M, Bond T, et al. Performance of XIPS electric propulsion in station keeping of the Boeing 702 spacecraft[R]. AIAA Paper 2002-4348.
    [7] Noord J. Lifetime assessment of the NEXT ion thruster[R]. AIAA Paper 2007-5274.
    [8] Hayashi M. Determination of electron-xenon total excitation cross-section[J]. Journal of Physics D: Applied Physics, 1983, 16(1): 581-589.
    [9] Sun Mingming, Wang Liang, Yang Junhai, et al. Study on the key factor of the triple grids’ lifetime for LIPS-300 ion thruster[J]. Plasma Science and Technology, 2018, 20: 045504.
    [10] 孙明明, 耿海, 龙建飞, 等. 不同环境温度对30 cm离子推力器三栅极组件的离子刻蚀速率影响分析[J]. 推进技术, 2020, 41(1):121-131. (Sun Mingming, Geng Hai, Long Jianfei, et al. Study on the influence of different ambient temperature on the ion erosion rate for the triple grid of 30 cm diameter ion thruster[J]. Journal of Propulsion Technology, 2020, 41(1): 121-131
    [11] Goebel D, Schneider A. High voltage breakdown and conditioning of carbon and molybdenum electrodes[J]. IEEE Trans Plasma Science, 2005, 33(4): 1136-1148.
    [12] Miller J, Pullins S, Levandier D, et al. Xenon charge cross section for electrostatic thruster models[J]. Journal of Applied Physics, 2002, 91(3): 984-991.
    [13] Katz I, Anderson J, Polk J, et al. One dimensional hollow cathode model[J]. Journal of Propulsion and Power, 2003, 19(4): 595-600.
    [14] Mikellides I, Katz I, Mandell M. A 1-D model of the Hall-effect thruster with an exhaust region[R]. AIAA Paper 2001-3505
    [15] Chen Juanjuan, Zhang Tianping, Geng Hai, et al. Analysis of numerical simulation results of LIPS-200 lifetime experiments[J]. Plasma Science and Technology, 2016, 18(6): 611-616.
    [16] Goebel D, Jameson K, Watkins R, et al. Cathode and keeper plasma measurements using an ultra-fast miniature scanning probe[R]. AIAA Paper 2004-3430
    [17] 贺武生, 孙安邦, 毛根旺, 等. 离子推力器放电腔数值模拟[J]. 强激光与粒子束, 2010, 22(12):3020-3024. (He Wusheng, Sun Anbang, Mao Genwang, et al. Numerical simulation of ion thruster discharge chamber[J]. High Power Laser and Particle Beams, 2010, 22(12): 3020-3024
    [18] 温正, 钟凌伟, 王一白, 等. 离子推力器加速栅极离子运动规律的数值研究[J]. 强激光与粒子束, 2011, 23(6):1640-1645. (Wen Zheng, Zhong Lingwei, Wang Yibai, et al. Three-dimensional numerical study on motion laws of ions in ion thruster optics[J]. High Power Laser and Particle Beams, 2011, 23(6): 1640-1645
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1451
  • HTML全文浏览量:  338
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 修回日期:  2020-12-17
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回