Study on damage effects of lightning electromagnetic pulse on typical airborne GPS module
-
摘要: 为研究雷电电磁脉冲对典型无人机机载GPS模块的损伤效应,通过仿真模拟和试验分析相结合的方法,获取了对GPS模块受雷电电磁脉冲暂态干扰与永久损伤过程的认识,并获得了相应端口的损伤阈值。基于对雷电流特性的分析结果,利用CST仿真模拟了雷击时,无人机内外产生的复杂电磁场环境和GPS模块线缆上耦合产生的感应电压。并对典型机载GPS模块的数据通讯端口进行了雷电脉冲注入试验。研究结果表明:随着雷电脉冲的不断增强,GPS输出波形受到削弱影响的程度不断加重,直至丧失位置信息传输能力并发生物理损伤。GPS数据输入端口的雷电脉冲损伤阈值为314.5 V,GPS数据输出端口的雷电脉冲损伤阈值为235.2 V。Abstract: To study the damage effects of lightning electromagnetic pulses on the UAV airborne GPS module, the understanding of the transient interference, permanent damage process and the damage threshold of GPS modules by lightning electromagnetic pulses was obtained, through a combination of simulation and experimental analysis. Based on the analysis results of lightning current, CST was used to simulate the complex electromagnetic field and coupling voltage on the GPS cable. The data communication ports of the typical airborne GPS module was subjected to a lightning pulse injection test. The research results show that: with the continuous enhancement of the injected lightning pulse, the influence on the GPS output waveform kept on increasing. And finally, the function to transmit position information was lost and physical damage occurred. The lightning impulse damage threshold of the GPS data input port is 314.5 V, the lightning impulse damage threshold of the GPS data output port is 235.2 V.
-
表 1 无人机材料参数
Table 1. Material parameters of the drone
No. material density/(kg·m−3) permittivity conductivity/(S·m−1) relative permeability/(H·m−1) application 1 copper 8500 / 5.8×107 1 motor 2 polyimide 1200 2.4~4.5 / 1 shell of battery, control module, stage 3 Al 7075 2800 / 35 1 wing frame, main part 4 carbon fiber 1500 5 300 1 panel 表 2 GPS模块端口信息
Table 2. GPS module port information
No. name I/O description characteristic 1 SDA O I2C bus master-slave date compass clock pin 2 GND G ground ground 3 TX O UART communication interface GPS date output pin 4 RX I UART communication interface GPS date input pin 5 VCC I DC supply 3.6~5.5 V 6 SCL I I2C bus master-slave date compass clock pin -
[1] 李琛. 雷击环境下机载电子设备性能研究[D]. 西安: 西安电子科技大学, 2017.Li Chen. Research on the performance of airborne electronic device in the lightning environment[D]. Xi’an: Xidian University, 2017. [2] 刘贺楠, 郭俊, 伊同强, 等. 飞行器雷电直接效应与间接效应防护综述[J]. 宇航总体技术, 2019(4):56-62. (Liu Henan, Guo Jun, Yi Tongqiang, et al. Protection of direct and indirect effects of lightning on aircraft[J]. Aerospace System Engineering Technology, 2019(4): 56-62 [3] 骆立峰. 雷电间接效应试验与标准解析[J]. 电子科学技术, 2014(1):97-101. (Luo Lifeng. Analysis of lightning indirect effects test and standard[J]. Electronic Science and Technology, 2014(1): 97-101 [4] 仇善良, 段泽民, 司晓亮, 等. 直升机电子设备舱瞬态雷电感应磁场特性[J]. 高电压技术, 2017, 43(5):1409-1419. (Qiu Shanliang, Duan Zemin, Si Xiaoliang, et al. Transient lightning induced magnetic field characterisitics of helicopter electronic equipment cabin[J]. High Voltage Engineering, 2017, 43(5): 1409-1419 [5] 陈奇平, 方金鹏, 王万富. 整机雷电间接效应防护试验的若干技术探讨[J]. 微波学报, 2012(s3):305-308. (Chen Qiping, Fang Jinpeng, Wang Wanfu. Discussion on aircraft lightning indirect effects test[J]. Journal of Microwaves, 2012(s3): 305-308 [6] 沈杰, 潘绪超, 方中, 等. 强电磁脉冲对硅微惯性传感器的损伤效应研究[J]. 兵工学报, 2020, 41(6):1157-1164. (Shen Jie, Pan Xuchao, Fang Zhong, et al. Damage effect of strong electromagnetic pulse on micro-silicon inertial sensor[J]. Acta Armamentarii, 2020, 41(6): 1157-1164 [7] 黄立洋, 陈晓宁, 郭飞, 等. 直升机雷电间接效应数值仿真[J]. 强激光与粒子束, 2015, 27:083205. (Huang Liyang, Chen Xiaoning, Guo Fei, et al. Numerical simulation of lightning indirect effects on helicopter[J]. High Power Laser and Particle Beams, 2015, 27: 083205 doi: 10.11884/HPLPB201527.083205 [8] 黄邦菊, 肖尚辉. 超宽带通信信号对GPS接收机的干扰研究[J]. 信息工程大学学报, 2006(3):237-240. (Huang Bangju, Xiao Shanghui. Research on interference of UWB signal to GPS receivers[J]. Journal of Information Engineering University, 2006(3): 237-240 doi: 10.3969/j.issn.1671-0673.2006.03.009 [9] Apra M, D'Amore M, Gigliotti K, et al. Lightning indirect effects certification of a transport aircraft by numerical simulation[J]. IEEE Trans Electromagnetic Compatibility, 2008, 50(3): 513-523. doi: 10.1109/TEMC.2008.927738 [10] Perrin E, Tristant F, Guiffaut C, et al. A numerical tool to estimate lightning indirect effects on a composite aircraft[C]//30th International Conference on Lightning Protection (ICLP). 2011. [11] 黄军玲. 飞机雷电间接效应仿真与研究[D]. 成都: 西南交通大学, 2016.Huang Junling. Simulation and research of lightning indirect effects on the aircraft[D]. Chengdu: Southwest Jiaotong University, 2016. [12] 赵铜城, 余道杰, 周东方, 等. 无人机GPS接收机超宽谱电磁脉冲效应与试验分析[J]. 强激光与粒子束, 2019, 31:023001. (Zhao Tongcheng, Yu Daojie, Zhou Dongfang, et al. Ultra-wide spectrum electromagnetic pulse effect and experimental analysis of UVA GPS receiver[J]. High Power Laser and Particle Beams, 2019, 31: 023001 doi: 10.11884/HPLPB201931.180365 [13] 张智香, 刘小龙, 陈锦, 等. 高重频超宽谱短电磁脉冲对GPS接收机干扰[J]. 强激光与粒子束, 2014, 26:033006. (Zhang Zhixiang, Liu Xiaolong, Chen Jin, et al. Interference of ultra-wideband short electromagnetic pulses of high repetition frequency to GPS receiver[J]. High Power Laser and Particle Beams, 2014, 26: 033006 doi: 10.3788/HPLPB20142603.33006 [14] SAE-ARP-5412. Aircraft lightning environment and related test waveform[S]. [15] 赵涛宁, 刘顺坤. 飞机雷电间接效应试验方法[J]. 上海计量测试, 2018, 45(s1):6-10, 14. (Zhao Taoning, Liu Shunkun. Study of the lightning indirect effects test technique on aircraft[J]. Shanghai Measurement and Testing, 2018, 45(s1): 6-10, 14