[1] |
Xu Shuyan, Ostrikov K N, Li Y, et al. Low-frequency, high-density, inductively coupled plasma sources: Operation and applications[J]. Physics of Plasmas, 2001, 8(5): 2549-2557. doi: 10.1063/1.1343887
|
[2] |
Godyak V A, Alexandrovich B M. Plasma and electrical characteristics of inductive discharge in a magnetic field[J]. Physics of Plasmas, 2004, 11(7): 3553-3560. doi: 10.1063/1.1758946
|
[3] |
戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
|
[4] |
朱寒, 何湘, 陈秉岩, 等. 容性耦合射频放电等离子体的仿真模拟与实验诊断研究[J]. 电工技术学报, 2019, 34(16):3504-3511. (Zhu Han, He Xiang, Chen Bingyan, et al. Simulations and experimental diagnostic of capacitively coupled RF discharge plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3504-3511
|
[5] |
Lee H C, Chung C W. E-H heating mode transition in inductive discharges with different antenna sizes[J]. Physics of Plasmas, 2015, 22: 053505. doi: 10.1063/1.4916044
|
[6] |
Lee H C, Chung C W. Effect of antenna size on electron kinetics in inductively coupled plasmas[J]. Physics of Plasmas, 2013, 20: 101607. doi: 10.1063/1.4823470
|
[7] |
Jun H S, Chang H Y. Development of 40 MHz inductively coupled plasma source and frequency effects on plasma parameters[J]. Appl Phys Lett, 2008, 92: 041501. doi: 10.1063/1.2838306
|
[8] |
Ventzek P L G, Hoekstra R J, Kushner M J. Two-dimensional modeling of high plasma density inductively coupled sources for materials processing[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1994, 12(1): 461-477.
|
[9] |
Fukasawa T, Nouda T, Nakamura A, et al. RF self-bias characteristics in inductively coupled plasma[J]. Japanese Journal of Applied Physics, 1993, 32: 6076. doi: 10.1143/JJAP.32.6076
|
[10] |
Amorim J, Maciel H S, Sudano J P. High-density plasma mode of an inductively coupled radio frequency discharge[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1991, 9(2): 362-365.
|
[11] |
张改玲, 滑跃, 郝泽宇, 等. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究[J]. 物理学报, 2019, 68:105202. (Zhang Gailing, Hua Yue, Hao Zeyu, et al. Experimental investigation of plasma parameters in 13.56 MHz/2 MHz cylindrical inductively coupled plasma[J]. Acta Physica Sinica, 2019, 68: 105202 doi: 10.7498/aps.68.20190071
|
[12] |
张昀, 王波, 王荷军. 射频感应耦合等离子体朗缪双探针诊断分析[J]. 真空, 2016, 53(3):56-61. (Zhang Yun, Wang Bo, Wang Hejun. Langmuir double probe diagnostic analysis of RF inductively coupled plasma[J]. Vacuum, 2016, 53(3): 56-61
|
[13] |
王荷军, 王波, 刘云辉, 等. 放电参量对射频容性耦合等离子体电子密度的影响[J]. 真空, 2017, 54(4):26-30. (Wang Hejun, Wang Bo, Liu Yunhui, et al. Influence of discharge parameters on electron density of RF capacitively coupled plasma[J]. Vacuum, 2017, 54(4): 26-30
|
[14] |
Wen Deqi, Liu Wei, Gao Fei, et al. A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon[J]. Plasma Sources Science and Technology, 2016, 25: 045009. doi: 10.1088/0963-0252/25/4/045009
|
[15] |
汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 合肥: 中国科学技术大学, 2014.Wang Jian. Experimental study on radio frequency inductively coupled plasmas and mode transition[D]. Hefei: University of Science and Technology of China, 2014).
|
[16] |
桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.Sang Jianhua. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013).
|
[17] |
苏晨, 徐浩军, 林敏, 等. 封闭式等离子体发生器设计及其放电等离子体参数分布实验研究[J]. 高电压技术, 2013, 39(7):1668-1673. (Su Chen, Xu Haojun, Lin Min, et al. Design on closed plasma generator and experimental study on its plasma parameters distribution[J]. High Voltage Engineering, 2013, 39(7): 1668-1673 doi: 10.3969/j.issn.1003-6520.2013.07.019
|
[18] |
何湘. 飞机局部等离子体隐身探索研究[D]. 南京: 南京理工大学, 2010.He Xiang. Studies on plasma stealth technique application in parts of plane[D]. Nanjing: Nanjing University of Science & Technology, 2010).
|
[19] |
赵日康, 张紫浩, 张林, 等. 圆柱形等离子体对微波散射的数值模拟与实验研究[J]. 强激光与粒子束, 2017, 29:053001. (Zhao Rikang, Zhang Zihao, Zhang Lin, et al. Microwave scattering by inhomogeneous plasma column[J]. High Power Laser and Particle Beams, 2017, 29: 053001 doi: 10.11884/HPLPB201729.170043
|