留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

放电功率变化对电磁波在电感耦合闭式等离子体中的衰减特性

林茂 徐浩军 魏小龙 韩欣珉 常怡鹏 林敏

林茂, 徐浩军, 魏小龙, 等. 放电功率变化对电磁波在电感耦合闭式等离子体中的衰减特性[J]. 强激光与粒子束, 2021, 33: 065012. doi: 10.11884/HPLPB202133.200320
引用本文: 林茂, 徐浩军, 魏小龙, 等. 放电功率变化对电磁波在电感耦合闭式等离子体中的衰减特性[J]. 强激光与粒子束, 2021, 33: 065012. doi: 10.11884/HPLPB202133.200320
Lin Mao, Xu Haojun, Wei Xiaolong, et al. Attenuation characteristics of electromagnetic wave in inductive coupled plasma based on variation of discharge power[J]. High Power Laser and Particle Beams, 2021, 33: 065012. doi: 10.11884/HPLPB202133.200320
Citation: Lin Mao, Xu Haojun, Wei Xiaolong, et al. Attenuation characteristics of electromagnetic wave in inductive coupled plasma based on variation of discharge power[J]. High Power Laser and Particle Beams, 2021, 33: 065012. doi: 10.11884/HPLPB202133.200320

放电功率变化对电磁波在电感耦合闭式等离子体中的衰减特性

doi: 10.11884/HPLPB202133.200320
基金项目: 国家自然科学基金资项目(12075319)
详细信息
    作者简介:

    林 茂(1988—),男,博士,主要从事低气压等离子放电技术研究

  • 中图分类号: TM31

Attenuation characteristics of electromagnetic wave in inductive coupled plasma based on variation of discharge power

  • 摘要: 射频电感耦合等离子体(ICP)放电方式能够在较宽的压强范围内产生大面积、密度高的等离子体,在对电磁波衰减应用中具有较大优势。通过研究ICP等离子体与电磁波相互作用的过程,改进闭式等离子体模型,建立电磁波在非均匀等离子体中传播的分层计算模型,对实测诊断分布情形下等离子体与电磁波的相互作用进行研究,得到不同功率条件下电磁波衰减的变化情况;提出射频电感耦合闭式等离子体用于电磁波衰减的方法并实验验证,基于等离子体覆盖金属平板的测量模型,在实验室内搭建了以金属板为衬底的弓形微波反射测试系统,研究了闭式等离子体对4~8 GHz频段范围内微波反射的作用特性,以及不同射频功率对微波反射的影响规律,并将实验测量与计算结果进行对比分析。实验表明,通过功率调节,电感耦合闭式等离子体对5.92~6.8 GHz频带电磁波具有明显的衰减作用。
  • 图  1  闭式等离子体分层计算模型示意图

    Figure  1.  Schematic diagram of a closed plasma hierarchical calculation model

    图  2  平板型ICP发生装置的放电腔室与天线示意图和实物图

    Figure  2.  Schematic diagram and picture of discharge chamber and antenna of flat plate ICP generator

    图  3  闭式等离子体电子密度测量值与拟合结果

    Figure  3.  Electron density measurement and fitting results of closed plasma

    图  4  电子密度为实测值的衰减情况

    Figure  4.  Attenuation of measured electron density values

    图  5  实验装置实物图

    Figure  5.  Experimental setup and device

    图  6  功率为200 W时ICP等离子体对电磁波的衰减变化

    Figure  6.  Attenuation of microwave in ICP when the power is 200 W

    图  7  功率为300 W时ICP等离子体对电磁波的衰减变化

    Figure  7.  Attenuation of microwave in ICP when the power is 300 W

    图  8  功率为400 W时ICP等离子体对电磁波的衰减变化

    Figure  8.  Attenuation of microwave in ICP plasma when the power is 400 W

    图  9  功率为500 W时ICP等离子体对电磁波的衰减变化

    Figure  9.  Attenuation of microwave in ICP plasma to when the power is 500 W

    图  10  功率为600 W时ICP等离子体对电磁波的衰减变化

    Figure  10.  Attenuation of microwave in ICP plasma when the power is 600 W

    图  11  5.92~6.8 GHz频段平均衰减的变化情况

    Figure  11.  Variation of average attenuation in 5.92~6.8 GHz frequency band

    图  12  5.92~6.8 GHz频段衰减峰值的变化情况

    Figure  12.  Variation of attenuation peak of 5.92~6.8 GHz frequency band

    图  13  功率为400 W时等离子体对电磁波衰减的计算与实验对比

    Figure  13.  Comparison between calculation and experiment of electromagnetic wave attenuation by plasma at 400 W

  • [1] Xu Shuyan, Ostrikov K N, Li Y, et al. Low-frequency, high-density, inductively coupled plasma sources: Operation and applications[J]. Physics of Plasmas, 2001, 8(5): 2549-2557. doi: 10.1063/1.1343887
    [2] Godyak V A, Alexandrovich B M. Plasma and electrical characteristics of inductive discharge in a magnetic field[J]. Physics of Plasmas, 2004, 11(7): 3553-3560. doi: 10.1063/1.1758946
    [3] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
    [4] 朱寒, 何湘, 陈秉岩, 等. 容性耦合射频放电等离子体的仿真模拟与实验诊断研究[J]. 电工技术学报, 2019, 34(16):3504-3511. (Zhu Han, He Xiang, Chen Bingyan, et al. Simulations and experimental diagnostic of capacitively coupled RF discharge plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3504-3511
    [5] Lee H C, Chung C W. E-H heating mode transition in inductive discharges with different antenna sizes[J]. Physics of Plasmas, 2015, 22: 053505. doi: 10.1063/1.4916044
    [6] Lee H C, Chung C W. Effect of antenna size on electron kinetics in inductively coupled plasmas[J]. Physics of Plasmas, 2013, 20: 101607. doi: 10.1063/1.4823470
    [7] Jun H S, Chang H Y. Development of 40 MHz inductively coupled plasma source and frequency effects on plasma parameters[J]. Appl Phys Lett, 2008, 92: 041501. doi: 10.1063/1.2838306
    [8] Ventzek P L G, Hoekstra R J, Kushner M J. Two-dimensional modeling of high plasma density inductively coupled sources for materials processing[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1994, 12(1): 461-477.
    [9] Fukasawa T, Nouda T, Nakamura A, et al. RF self-bias characteristics in inductively coupled plasma[J]. Japanese Journal of Applied Physics, 1993, 32: 6076. doi: 10.1143/JJAP.32.6076
    [10] Amorim J, Maciel H S, Sudano J P. High-density plasma mode of an inductively coupled radio frequency discharge[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1991, 9(2): 362-365.
    [11] 张改玲, 滑跃, 郝泽宇, 等. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究[J]. 物理学报, 2019, 68:105202. (Zhang Gailing, Hua Yue, Hao Zeyu, et al. Experimental investigation of plasma parameters in 13.56 MHz/2 MHz cylindrical inductively coupled plasma[J]. Acta Physica Sinica, 2019, 68: 105202 doi: 10.7498/aps.68.20190071
    [12] 张昀, 王波, 王荷军. 射频感应耦合等离子体朗缪双探针诊断分析[J]. 真空, 2016, 53(3):56-61. (Zhang Yun, Wang Bo, Wang Hejun. Langmuir double probe diagnostic analysis of RF inductively coupled plasma[J]. Vacuum, 2016, 53(3): 56-61
    [13] 王荷军, 王波, 刘云辉, 等. 放电参量对射频容性耦合等离子体电子密度的影响[J]. 真空, 2017, 54(4):26-30. (Wang Hejun, Wang Bo, Liu Yunhui, et al. Influence of discharge parameters on electron density of RF capacitively coupled plasma[J]. Vacuum, 2017, 54(4): 26-30
    [14] Wen Deqi, Liu Wei, Gao Fei, et al. A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon[J]. Plasma Sources Science and Technology, 2016, 25: 045009. doi: 10.1088/0963-0252/25/4/045009
    [15] 汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 合肥: 中国科学技术大学, 2014.

    Wang Jian. Experimental study on radio frequency inductively coupled plasmas and mode transition[D]. Hefei: University of Science and Technology of China, 2014).
    [16] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.

    Sang Jianhua. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013).
    [17] 苏晨, 徐浩军, 林敏, 等. 封闭式等离子体发生器设计及其放电等离子体参数分布实验研究[J]. 高电压技术, 2013, 39(7):1668-1673. (Su Chen, Xu Haojun, Lin Min, et al. Design on closed plasma generator and experimental study on its plasma parameters distribution[J]. High Voltage Engineering, 2013, 39(7): 1668-1673 doi: 10.3969/j.issn.1003-6520.2013.07.019
    [18] 何湘. 飞机局部等离子体隐身探索研究[D]. 南京: 南京理工大学, 2010.

    He Xiang. Studies on plasma stealth technique application in parts of plane[D]. Nanjing: Nanjing University of Science & Technology, 2010).
    [19] 赵日康, 张紫浩, 张林, 等. 圆柱形等离子体对微波散射的数值模拟与实验研究[J]. 强激光与粒子束, 2017, 29:053001. (Zhao Rikang, Zhang Zihao, Zhang Lin, et al. Microwave scattering by inhomogeneous plasma column[J]. High Power Laser and Particle Beams, 2017, 29: 053001 doi: 10.11884/HPLPB201729.170043
  • 加载中
图(13)
计量
  • 文章访问数:  931
  • HTML全文浏览量:  355
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 修回日期:  2021-01-28
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回