留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双极性固态直线变压器驱动器的研制

饶俊峰 吴施蓉 朱益成 李孜 姜松 王永刚

饶俊峰, 吴施蓉, 朱益成, 等. 双极性固态直线变压器驱动器的研制[J]. 强激光与粒子束, 2021, 33: 065006. doi: 10.11884/HPLPB202133.200323
引用本文: 饶俊峰, 吴施蓉, 朱益成, 等. 双极性固态直线变压器驱动器的研制[J]. 强激光与粒子束, 2021, 33: 065006. doi: 10.11884/HPLPB202133.200323
Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065006. doi: 10.11884/HPLPB202133.200323
Citation: Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065006. doi: 10.11884/HPLPB202133.200323

双极性固态直线变压器驱动器的研制

doi: 10.11884/HPLPB202133.200323
基金项目: 国家重点研发计划项目(2019YFC0119100);国家自然科学基金青年基金项目(51707122);上海市青年科技英才扬帆计划(20YF1431100)
详细信息
    通讯作者:

    饶俊峰(1985—),男,博士,副教授,主要从事全固态高压脉冲发生器和低温等离子体应用等方面的研究工作

  • 中图分类号: TM83

Development of bipolar solid-state linear transformer driver

  • 摘要: 在针对脉冲电磁场肿瘤消融的应用场合,双极性脉冲比单极性脉冲效果更均匀,而要产生ns级前沿的双极性高压纳秒或亚微秒脉冲难度大,电磁干扰强,控制要求更高。设计了一台双极性全固态直线型变压器驱动源(SSLTD),双极性SSLTD由结构完全相同的LTD模块经过副边绕组反向串联构成,在负载上实现双极性窄脉冲。双极性SSLTD输出波形稳定的脉冲的关键在于磁芯复位,通过电阻负载实验,重点对比分析了复位电流的形式对复位效果的影响,以及采用直流复位时幅值、脉宽、正负脉冲时间间隔、单级模块中开关管并联数量、复位电流大小对双极性SSLTD输出的影响。实验结果表明,所设计的双极性SSLTD能够在500 Ω负载上稳定产生重频双极性纳秒脉冲,输出电压0~±5 kV可调,脉宽200~400 ns可调,正负脉冲时间间隔0~1 ms可调,上升沿和下降沿20~50 ns;反向串联的直流复位电路结构简单、复位效果好。该脉冲源使用模块化设计,结构紧凑,电气绝缘要求较低,可灵活输出双极性、正极性与负极性高压亚微秒脉冲。
  • 图  1  多级双极性全固态LTD等效电路

    Figure  1.  Equivalent circuit of a m-stage bipolar all-solid-state LTD

    图  2  正极性全固态LTD截面原理图

    Figure  2.  Schematic of half sectional view of positive all-solid-state LTD

    图  3  全固态LTD模块俯视图

    Figure  3.  Photo of the top view of an all-solid-state LTD module

    图  4  脉冲复位电路原理图

    Figure  4.  Schematic of pulse reset circuit

    图  5  脉冲复位电流及双极性LTD输出脉冲时序图

    Figure  5.  Diagram of pulse reset current and bipolar LTD output pulse sequence

    图  6  直流复位电路原理图

    Figure  6.  Schematic of DC reset circuit

    图  7  膜等效电路

    Figure  7.  Membrane equivalent circuit

    图  8  双极性全固态LTD测试环境

    Figure  8.  Test environment of bipolar all-solid-state LTD

    图  9  1 ms,1 A脉冲复位电流波形

    Figure  9.  1 ms, 1 A pulse reset current waveform

    图  10  30 ms,1 A脉冲复位电流波形

    Figure  10.  30 ms, 1 A pulse reset current waveform

    图  11  不同复位电流形式双极性全固态LTD输出电压波形

    Figure  11.  Different output voltage waveforms with DC and pulse reset current

    图  12  双极性全固态LTD输出不同幅值电压波形

    Figure  12.  Different voltage waveforms with variable charging voltages

    图  13  双极性全固态LTD输出不同脉宽电压波形

    Figure  13.  Different output voltage waveforms with width variable

    图  14  不同开关管并联数量双极性全固态LTD输出电压波形

    Figure  14.  Different output voltage waveforms with the number of parallel mosfet variable

    图  15  不同脉冲时间间隔双极性全固态LTD输出电压波形

    Figure  15.  Different output voltage waveforms with pulse interval variable

    图  16  不同直流复位电流大小双极性全固态LTD输出电压波形

    Figure  16.  Different output voltage waveforms with DC reset current variable

    图  17  不同副边结构LTD输出电压波形

    Figure  17.  Different output voltage waveforms with secondary side variable

    图  18  双极性LTD输出电压波形及负极性模块MOSFET两端波形

    Figure  18.  Waveforms with output voltage of bipolar and MOSFET in negative module

    表  1  单级全固态LTD模块上的主要器件

    Table  1.   Main devices on single all-solid-state LTD Module

    devicemodelparameternumber
    driver IC MCP1407 15 V,6 A 15
    SiC MOSFET C2M0080120 1200 V,31.6 A 14
    capacitor 2220AC104KAT1A 1000 V,100 n 28
    magnetic core 1K107 130.5 mm×86.5 mm×13.5 mm 1
    optic receiver T1521Z/R2521Z 5 Mb/s 1
    下载: 导出CSV
  • [1] 谢瑞, 刘军, 何湘宁. 脉冲功率技术在环境保护中的应用[J]. 电力电子技术, 2010, 44(4):59-60, 92. (Xie Rui, Liu Jun, He Xiangning. Pulsed power technology in environmental applications[J]. Power Electronics, 2010, 44(4): 59-60, 92
    [2] 陈新华, 孙军辉, 殷胜勇, 等. 脉冲电场与生物医药技术的交叉及其对肿瘤治疗模式的改变[J]. 高电压技术, 2014, 40(12):3746-3754. (Chen Xinhua, Sun Junhui, Yin Shengyong, et al. Interaction of pulsed electric field and biomedicine technology and the influence on solid tumor therapy[J]. High Voltage Engineering, 2014, 40(12): 3746-3754
    [3] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [4] Yin Shengyong, Chen Xinhua, Hu Chen, et al. Nanosecond pulsed electric field (nsPEF) treatment for hepatocellular carcinoma: a novel locoregional ablation decreasing lung metastasis[J]. Cancer Letters, 2014, 346(2): 285-291. doi: 10.1016/j.canlet.2014.01.009
    [5] Shao Tao, Zhang Cheng, Long Kaihua, et al. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air[J]. Applied Surface Science, 2010, 256(12): 3888-3894. doi: 10.1016/j.apsusc.2010.01.045
    [6] 律方成, 詹振宇, 张立国, 等. 等离子体氟化改性微米AlN填料对环氧树脂绝缘性能的影响[J]. 电工技术学报, 2019, 34(16):3522-3531. (Lü Fangcheng, Zhan Zhenyu, Zhang Liguo, et al. Effect of plasma fluorinated modified micro-AlN filler epoxy resin on the insulation properties[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3522-3531
    [7] MadhukarA, RajanikanthB S. Augmenting NOx reduction in diesel exhaust by combined plasma/ozone injection technique: a laboratory investigation[J]. High Voltage, 2018, 3(1): 60-66. doi: 10.1049/hve.2017.0153
    [8] Ewing J J. Excimer laser technology development[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1061-1071. doi: 10.1109/2944.902155
    [9] 崔绍颖, 王书强, 马志毅. 脉冲分流器的发展现状研究[J]. 宇航计测技术, 2016, 36(6):82-88. (Cui Shaoying, Wang Shuqiang, Ma Zhiyi. Research on development status of pulse current shunts[J]. Journal of Astronautic Metrology and Measurement, 2016, 36(6): 82-88
    [10] 吕泽琦, 谢彦召, 杨海亮. 消毒灭菌的电离辐射与电磁辐射等物理技术比较分析[J]. 强激光与粒子束, 2020, 32:059001. (Lü Zeqi, Xie Yanzhao, Yang Hailiang. Comparison and analysis of the electromagnetic radiation, ionizing radiation and other physical technologies for disinfection and sterilization[J]. High Power Laser and Particle Beams, 2020, 32: 059001
    [11] 江伟华. 高重复频率脉冲功率技术及其应用: (6)代表性的应用[J]. 强激光与粒子束, 2014, 26:030201. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (VI) typical applications[J]. High Power Laser and Particle Beams, 2014, 26: 030201 doi: 10.3788/HPLPB20142603.30201
    [12] 姜晓峰, 丛培天, 周文渊, 等. 用于FLTD的陶瓷封装多间隙气体开关[J]. 强激光与粒子束, 2020, 32:035007. (Jiang Xiaofeng, Cong Peitian, Zhou Wenyuan, et al. Ceramic packaged multi-gap gas switch for fast linear transformer driver[J]. High Power Laser and Particle Beams, 2020, 32: 035007
    [13] Rao Junfeng, Liu Kefu, Qiu Jian. All solid-state nanosecond pulsed generators based on Marx and magnetic switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1123-1128. doi: 10.1109/TDEI.2013.6571426
    [14] Rao Junfeng, Zhang Wei, Jiang Song, et al. Nanosecond pulse generator based on cascaded avalanche transistors and Marx circuits[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 374-380. doi: 10.1109/TDEI.2018.007710
    [15] 饶俊峰, 李成建, 李孜, 等. 全固态高重频高压脉冲电源[J]. 强激光与粒子束, 2019, 31:035001. (Rao Junfeng, Li Chengjian, Li Zi, et al. All solid state high-frequency and high voltage pulsed power supply[J]. High Power Laser and Particle Beams, 2019, 31: 035001
    [16] Jiang Weihua, Sugiyama H, TokuchiA. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627
    [17] Canacsinh H, Redondo L M, Silva J F. Marx-type solid-state bipolar modulator topologies: performance comparison[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2603-2610. doi: 10.1109/TPS.2012.2190944
    [18] 江伟华. 高重复频率脉冲功率技术及其应用: (7)主要技术问题和未来发展趋势[J]. 强激光与粒子束, 2015, 27:010201. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (VII) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27: 010201 doi: 10.3788/HPLPB20152701.10201
    [19] RaoJunfeng, Zhu Yicheng, Wang Yonggang, et al. Study on the basic characteristics of solid-state linear transformer drivers[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3168-3175. doi: 10.1109/TPS.2020.3013292
    [20] 马龙. 单/双极性高压脉冲源的研制及抑藻实验研究[D]. 重庆: 重庆大学, 2015: 9-29.

    Ma Long. Developing a monopolar/bipolar high voltage pulser and doing experimental research on its effect on microalgae cell inactivation[D]. Chongqing: Chongqing University, 2015: 9-29.
    [21] 雷宇, 邱剑, 刘克富. 150kV全固态高压脉冲发生器设计[J]. 强激光与粒子束, 2012, 24(3):673-677. (Lei Yu, Qiu Jian, Liu Kefu. Design of 150 kV all-solid-state high voltage pulsed power generator[J]. High Power Laser and Particle Beams, 2012, 24(3): 673-677 doi: 10.3788/HPLPB20122403.0673
    [22] 王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4):799-806. (Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al. A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806
    [23] 虞超群, 嵇保健, 孙柯, 等. 基于移相控制技术的纳秒级高压窄脉冲电源研究[J]. 电工电能新技术, 2016, 35(9):55-59. (Yu Chaoqun, Ji Baojian, Sun Ke, et al. Design of high voltage pulsed power generator based on technology of phase-shifted control[J]. Advanced Technology of Electrical Engineering and Energy, 2016, 35(9): 55-59
    [24] 葛劲伟, 姜松, 饶俊峰, 等. 全固态高压双极性方波脉冲叠加器的研制[J]. 高电压技术, 2019, 45(4):1305-1312. (Ge Jinwei, Jiang Song, Rao Junfeng, et al. Development of all-solid-state bipolar pulse adder with high voltage rectangular wave pulses output[J]. High Voltage Engineering, 2019, 45(4): 1305-1312
    [25] 江伟华. 基于半导体开关的高重频LTD[J]. 高电压技术, 2015, 41(6):1776-1780. (Jiang Weihua. High-frequency repetitive LTD based on semiconductor switches[J]. High Voltage Engineering, 2015, 41(6): 1776-1780
    [26] Collier L, Dickens J, Mankowski J, et al. Performance analysis of an all solid-state linear transformer driver[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1755-1761. doi: 10.1109/TPS.2017.2712361
    [27] 米彦, 孙才新, 姚陈果, 等. 基于等效电路模型的细胞内外膜跨膜电位频率响应[J]. 电工技术学报, 2007, 22(6):6-11. (Mi Yan, Sun Caixin, Yao Chenguo, et al. Frequency response of transmenbrane potential on cell inner and outer membrane based on equivalent circuit model[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 6-11
    [28] 董守龙. 高频双极性微秒脉冲电场不可逆电穿孔消融肿瘤的实验与机理研究[D]. 重庆: 重庆大学, 2017: 39-58.

    Dong Shoulong. Experiments and mechanism research of irreversible electroporation by high frequency bipolar microsecond pulse for tumor ablation[D]. Chongqing: Chongqing University, 2017: 39-58.
    [29] 赵亚军. 复合脉冲消融肿瘤致组织介电与阻抗特性动态变化机理及实验研究[D]. 重庆: 重庆大学, 2018: 23-46.

    Zhao Yajun. Experimental and mechanism study on the dynamic change of tissue dielectric and impedance caused by composite pulsed electric field for tumor ablation[D]. Chongqing: Chongqing University, 2018: 23-46.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  1616
  • HTML全文浏览量:  686
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-03-04
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回