留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受激布里渊散射脉冲压缩技术研究进展

廉玉东 王禹贺 章雨琴 韩世伟 虞洋 齐萱 栾楠楠 白振旭 王雨雷 吕志伟

廉玉东, 王禹贺, 章雨琴, 等. 受激布里渊散射脉冲压缩技术研究进展[J]. 强激光与粒子束, 2021, 33: 051001. doi: 10.11884/HPLPB202133.210006
引用本文: 廉玉东, 王禹贺, 章雨琴, 等. 受激布里渊散射脉冲压缩技术研究进展[J]. 强激光与粒子束, 2021, 33: 051001. doi: 10.11884/HPLPB202133.210006
Lian Yudong, Wang Yuhe, Zhang Yuqin, et al. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33: 051001. doi: 10.11884/HPLPB202133.210006
Citation: Lian Yudong, Wang Yuhe, Zhang Yuqin, et al. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33: 051001. doi: 10.11884/HPLPB202133.210006

受激布里渊散射脉冲压缩技术研究进展

doi: 10.11884/HPLPB202133.210006
基金项目: 国家自然科学基金项目(61905062,61905061,61927815,62075056);中国博士后科学基金项目(2020M670613);河北省博士后择优资助项目(B2020003026);河北省自然科学基金项目(F2019202294);河北省科技创新战略资助项目(20180601);全光网络与现代通信网教育部重点实验室(北京交通大学)项目(AON2019005)
详细信息
    作者简介:

    廉玉东(1989—),男,博士,讲师,主要从事高功率固体激光技术及应用研究

    通讯作者:

    王禹贺(1994—),男,硕士研究生,主要从事SBS脉冲压缩及激光探测方面的研究

  • 中图分类号: O437.2

Research progress of stimulated Brillouin scattering pulse compression technique

  • 摘要:

    受激布里渊散射(SBS)作为三阶光学效应广泛应用于激光组束、分布式光纤传感、布里渊激光器等领域。近年来,SBS脉冲压缩亦得到特殊关注。基于布里渊放大过程中的能量转移特性,SBS脉冲压缩技术能够将ns量级脉冲压缩至亚ns量级,峰值功率可提升1~2个数量级。系统介绍了SBS脉冲压缩基本理论,综合论述了SBS压缩器结构、增益介质、泵浦脉冲等因素对脉冲压缩特性的影响,并对SBS脉冲压缩发展趋势进行了展望,为今后SBS特性的研究提供了有益参考,也为高重频、高能量激光的获取提供了可行方案。

  • 图  1  泵浦脉冲与斯托克斯脉冲相互作用图

    Figure  1.  Schematic diagram of the interaction between pump pulse and Stokes pulse

    图  2  单池结构原理图

    Figure  2.  Schematic diagram of single cell structure

    图  3  紧凑双池结构原理图

    Figure  3.  Schematic diagram of compact double cell structure

    图  4  准稳态SBS压缩实验原理图[62]

    Figure  4.  Schematic diagram of quasi-steady state SBS compression experiment[62]

    图  5  高重复频率下固体介质SBS压缩实验装置[75]

    Figure  5.  Experimental set of solid medium SBS pulse compression at high repetition rate[75]

    图  6  两步SBS脉冲压缩实验原理图[77]

    Figure  6.  Schematic diagram of the two-step SBS pulse compression experiment[77]

    图  7  双长腔SBS脉冲压缩光学布局[85]

    Figure  7.  Optical layout of SBS compression with double-long cavity[85]

    图  8  三种混合增益介质能量反射率与泵浦能量的关系[67]

    Figure  8.  Relationship between energy reflection and pump energy in the three mixed gain media[67]

    图  9  基于全氟碳介质的脉冲压缩实验光路[91]

    Figure  9.  Optical path of pulse compression experiment based on perfluorocarbon medium[91]

    图  10  压缩脉冲宽度和能量反射率随入射能量增加的变化关系[92-93]

    Figure  10.  Variation of compressed pulse width and energy reflectivity with the increase of input energy[92-93]

    图  11  脉冲压缩比与增益系数的关系[99]

    Figure  11.  Relationship between pulse compression ratio and gain coefficient[99]

    图  12  能量转换效率与增益系数的关系[100]

    Figure  12.  Relationship between energy conversion efficiency and gain coefficient[100]

    图  13  泵浦能量影响[41, 59]

    Figure  13.  Pump energy performance[41, 59]

    图  14  转换效率与泵浦能量的关系[42]

    Figure  14.  Relationship between conversion efficiency and pump energy[42]

    图  15  Stokes脉冲宽度与泵浦宽度的关系[102]

    Figure  15.  Relationship between Stokes pulse width and pump width[102]

    图  16  能量反射率随泵浦脉冲宽度的变化[103]

    Figure  16.  Change of energy reflectivity with pump pulse width[103]

    图  17  泵浦形状

    Figure  17.  Pump shape

    图  18  脉冲初始作用位置对应的压缩效果[43]

    Figure  18.  Compression effect corresponding to the initial action position of pulses[43]

    图  19  Stokes脉冲宽度随透镜焦距的变化[107]

    Figure  19.  Variation of Stokes pulse width with focal length of lens[107]

    图  20  池长的影响[109]

    Figure  20.  Effect of cell length[109]

    图  21  SBS脉冲压缩主要进展的时间轴

    Figure  21.  Timeline of the major advances in SBS pulse compression

    图  22  SBS压缩器光路布局:(a)旋转楔形和聚焦透镜;(b)旋转偏心透镜[120]

    Figure  22.  SBS compressor optical path layout:(a) rotating wedge and focusing lens;(b) rotating off-centered lens[120]

    图  23  不同能量下光束轮廓:(a)泵浦光束;(b,c)无偏转离心透镜;(d,e,f)有偏转离心透镜[120]

    Figure  23.  Beam profile under different pump energy:(a) pump beam;(b,c) without rotating off-centered lens;(d,e,f) with rotating off-centered lens[120]

    图  24  基于SBS和LIB组合的脉冲压缩实验装置[54]

    Figure  24.  Pulse compression experimental setup based on the combination of SBS and LIB[54]

    表  1  常用氟系列化合物的SBS参数

    Table  1.   SBS parameters of fluorine compounds in common use

    SBS mediumrefractive indexfrequency shift /MHzphonon lifetime /nsgain coefficient /(cm·GW−1reference
    FC-401.2910750.201.8[94]
    FC-431.3033000.151.3[58, 95]
    FC-701.3021330.800.2[58]
    FC-721.2511001.206.0[43, 96]
    FC-7701.2913500.573.5[40]
    FC-32831.2726000.594.1[89, 95]
    HT-1101.285530.604.7[97]
    HT-1351.2811090.403.0[92]
    HT-2701.2884010.102.3[97]
    下载: 导出CSV

    表  2  泵浦宽度对SBS压缩影响数值仿真参数设置

    Table  2.   Parameter setting of numerical simulation for the influence of pump width on SBS compression

    pump power density/(MW·cm−2Stokes power density/(MW·cm−2gain coefficient/(cm·GW−1phonon lifetime/nspump width/ns
    5005000.180.32~5
    下载: 导出CSV
  • [1] 张昀. 基于SBS脉冲压缩产生百皮秒脉冲及尾部调制抑制的研究[D]. 哈尔滨: 哈尔滨工业大学, 2012: 9.

    Zhang Yun. Investigation on obtaining a hundreds ps pulse and suppressing its tail modulations based on SBS pulse compression[D]. Harbin: Harbin Institute of Technology, 2012: 9
    [2] 徐涛, 尚万里, 魏惠月, 等. 基于神光Ⅲ原型装置的冲击点火分解实验[J]. 强激光与粒子束, 2015, 27:052002. (Xu Tao, Shang Wanli, Wei Huiyue, et al. Resolvability experiments of shock ignition implemented on Shenguang Ⅲ prototype laser facility[J]. High Power Laser and Particle Beams, 2015, 27: 052002 doi: 10.3788/HPLPB20152705.52002
    [3] Perkins L J, Betti R, LaFortune K N, et al. Shock ignition: a new approach to high gain inertial confinement fusion on the National Ignition Facility[J]. Physical Review Letters, 2009, 103: 045004. doi: 10.1103/PhysRevLett.103.045004
    [4] Betti R, Zhou C D, Anderson K S, et al. Shock ignition of thermonuclear fuel with high areal density[J]. Physical Review Letters, 2007, 98: 155001. doi: 10.1103/PhysRevLett.98.155001
    [5] Quinlan F, Gee S, Ozharar S, et al. Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser[J]. Optics Letters, 2006, 31(19): 2870-2872. doi: 10.1364/OL.31.002870
    [6] Yang Shiquan, Ponomarev E A, Bao Xiaoyi. 40-GHz transform-limited pulse generation from FM oscillation fiber laser with external cavity chirp compensation[J]. IEEE Photonics Technology Letters, 2004, 16(7): 1631-1633. doi: 10.1109/LPT.2004.828359
    [7] 曹文华, 刘颂豪, 廖常俊, 等. 单模光纤中皮秒啁啾脉冲压缩[J]. 光学学报, 1995, 15(2):180-185. (Cao Wenhua, Liu Songhao, Liao Changjun, et al. Picosecond chirped pulse compression in single-mode fibers[J]. Acta Optica Sinica, 1995, 15(2): 180-185 doi: 10.3321/j.issn:0253-2239.1995.02.011
    [8] 曹文华, 张有为, 刘颂豪, 等. 光纤正常色散区基于脉冲对交叉相位调制的亮脉冲压缩[J]. 物理学报, 1997, 46(5):919-928. (Cao Wenhua, Zhang Youwei, Liu Songhao, et al. Compression of bright optical pulse by pulse pair in the normal-dispersion regime of single-mode fibers[J]. Acta Physica Sinica, 1997, 46(5): 919-928 doi: 10.3321/j.issn:1000-3290.1997.05.013
    [9] 曹文华, 刘颂豪, 廖常俊, 等. 单模光纤中基于暗孤子交叉相位调制的亮脉冲压缩[J]. 光学学报, 1995, 15(3):281-286. (Cao Wenhua, Liu Songhao, Liao Changjun, et al. Compression of bright optical pulses by dark solitons in the normal dispersion region of single-mode fibers[J]. Acta Optica Sinica, 1995, 15(3): 281-286 doi: 10.3321/j.issn:0253-2239.1995.03.006
    [10] Kibler B, Fischer R, Lacourt P A, et al. Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre[J]. Electronics Letters, 2007, 43(17): 915-916. doi: 10.1049/el:20071726
    [11] Kibler B, Billet C, Lacourt P A, et al. All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons[J]. IEEE Photonics Technology Letters, 2006, 18(17): 1831-1833. doi: 10.1109/LPT.2006.880728
    [12] Ma Yuanyuan, Hou Shanglin, Wang Daobin, et al. Effects of power and shape of pump light on pulse compression based on stimulated Brillouin Scattering[C]//Progress in Electromagnetics Research Symposium-Spring. St. Petersburg, Russia, IEEE, 2018: 1765-1767.
    [13] 王天齐. 基于SBS的逆阶梯脉冲产生技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 1.

    Wang Tianqi. Research on the generation of downward step pulse based on SBS[D]. Harbin: Harbin Institute of Technology, 2019: 1
    [14] Lu Zhiwei, Gao Wei, He Weiming, et al. High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier[J]. Optics Express, 2009, 17(13): 10675-10680. doi: 10.1364/OE.17.010675
    [15] Gao Wei, Hu Xiaobo, Sun Di, et al. Simultaneous generation and Brillouin amplification of a dark hollow beam with a liquid-core optical fiber[J]. Optics Express, 2012, 20(18): 20715-20720. doi: 10.1364/OE.20.020715
    [16] Bel’dyugin I M, Efimkov V F, Mikhailov S I, et al. Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering[J]. Journal of Russian Laser Research, 2005, 26(1): 1-12. doi: 10.1007/s10946-005-0001-9
    [17] Bai Zhenxu, Yuan Hang, Liu Zhaohong, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review[J]. Optical Materials, 2018, 75: 626-645. doi: 10.1016/j.optmat.2017.10.035
    [18] Zhang Pingping, Hu Shuling, Chen Shuying, et al. A high-efficiency Brillouin fiber ring laser[J]. Chinese Optics Letters, 2009, 7(6): 495-497. doi: 10.3788/COL20090706.0495
    [19] 孟洲, 陈默, 陈伟, 等. 光纤传感中的受激布里渊散射效应[J]. 应用科学学报, 2018, 36(1):20-40. (Meng Zhou, Chen Mo, Chen Wei, et al. Stimulated Brillouin scattering in optical fiber sensing systems[J]. Journal of Applied Sciences, 2018, 36(1): 20-40 doi: 10.3969/j.issn.0255-8297.2018.01.002
    [20] Wang Shuangyi, Lu Zhiwei, Lin Dianyang, et al. Investigation of serial coherent laser beam combination based on Brillouin amplification[J]. Laser and Particle Beams, 2007, 25(1): 79-83. doi: 10.1017/S0263034607070127
    [21] Wang Y L, Lü Z W, Wang S Y, et al. Investigation on efficiency of non-collinear serial laser beam combination based on Brillouin amplification[J]. Laser and Particle Beams, 2009, 27(4): 651-655. doi: 10.1017/S0263034609990383
    [22] Guo Qi, Lu Zhiwei, Wang Yulei. Highly efficient Brillouin amplification of strong Stokes seed[J]. Applied Physics Letters, 2010, 96: 221107. doi: 10.1063/1.3435385
    [23] Galindez-Jamioy C A, López-Higuera J M. Brillouin distributed fiber sensors: an overview and applications[J]. Journal of Sensors, 2012, 2012: 204121.
    [24] Xu Jinlong, Dong Yongkang, Zhang Zhaohui, et al. Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors[J]. Measurement Science and Technology, 2016, 27: 124017. doi: 10.1088/0957-0233/27/12/124017
    [25] Dong Yongkang, Chen Liang, Bao Xiaoyi. Time-division multiplexing-based BOTDA over 100 km sensing length[J]. Optics Letters, 2011, 36(2): 277-279. doi: 10.1364/OL.36.000277
    [26] Hill K O, Kawasaki B S, Johnson D C. CW Brillouin laser[J]. Applied Physics Letters, 1976, 28(10): 608-609. doi: 10.1063/1.88583
    [27] Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors[J]. Applied Physics Letters, 2008, 92: 021120. doi: 10.1063/1.2831659
    [28] Ostermeyer M, Kong H J, Kovalev V I, et al. Trends in stimulated Brillouin scattering and optical phase conjugation[J]. Laser and Particle Beams, 2008, 26(3): 297-362. doi: 10.1017/S0263034608000335
    [29] Meng Hui, Eichler H J. Nd: YAG laser with a phase-conjugating mirror based on stimulated Brillouin scattering in SF6 gas[J]. Optics Letters, 1991, 16(8): 569-571. doi: 10.1364/OL.16.000569
    [30] Song K Y, Abedin K S, Hotate K, et al. Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber[J]. Optics Express, 2006, 14(13): 5860-5865. doi: 10.1364/OE.14.005860
    [31] Liu Jianguo, Cheng T H, Yeo Y K, et al. Stimulate Brillouin scattering based broadband tunable slow-light conversion in a highly nonlinear photonic crystal fiber[J]. Journal of Lightwave Technology, 2009, 27(10): 1279-1285. doi: 10.1109/JLT.2008.2007575
    [32] Cheng Tonglei, Cherif R, Liao Meisong, et al. Stimulated Brillouin scattering of higher-order acoustic modes in four-core tellurite microstructured optical fiber[J]. Applied Physics Express, 2012, 5: 102501. doi: 10.1143/APEX.5.102501
    [33] Bowers M W, Boyd R W. Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation[J]. IEEE Journal of Quantum Electronics, 1998, 34(4): 634-644. doi: 10.1109/3.663441
    [34] Andreev N F, Palashov O V, Pasmanik G A, et al. Four-channel pulse-periodic Nd: YAG laser with diffraction-limited output radiation[J]. Quantum Electronics, 1997, 27(7): 565-569. doi: 10.1070/QE1997v027n07ABEH001010
    [35] Scott A M, Ridley K D. A review of Brillouin-enhanced four-wave mixing[J]. IEEE Journal of Quantum Electronics, 1989, 25(3): 438-459. doi: 10.1109/3.18560
    [36] Liu Hongxin, Li Yongliang, Yang Chao, et al. 1.35 ns SBS laser pulse[J]. Optik, 2019, 184: 394-398. doi: 10.1016/j.ijleo.2019.04.123
    [37] Bai Zhenxu, Wang Yulei, Lu Zhiwei, et al. High compact, high quality single longitudinal mode hundred picoseconds laser based on stimulated Brillouin scattering pulse compression[J]. Applied Sciences, 2016, 6: 29. doi: 10.3390/app6010029
    [38] 刘莉, 吕志伟, 何伟明, 等. 高功率激光器上的SBS脉冲压缩[J]. 激光杂志, 2000, 21(2):10-12. (Liu Li, Lü Zhiwei, He Weiming, et al. SBS pulse compression on high-power laser[J]. Laser Journal, 2000, 21(2): 10-12 doi: 10.3969/j.issn.0253-2743.2000.02.005
    [39] 张祎. 高能激光抽运的受激布里渊散射相位共轭镜特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2006: 17-20.

    Zhang Yi. Investigation on the SBS phase conjugation mirror character of high energy laser pump[D]. Harbin: Harbin Institute of Technology, 2006: 17-20
    [40] Yuan Hang, Wang Yulei, Lu Zhiwei, et al. Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression[J]. Optics Express, 2017, 25(13): 14378-14388. doi: 10.1364/OE.25.014378
    [41] Feng Chengyong, Xu Xiaozhen, Diels J C. Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm[J]. Optics Letters, 2014, 39(12): 3367-3370. doi: 10.1364/OL.39.003367
    [42] Liu Zhaohong, Wang Yulei, Wang Yirui, et al. Generation of high-energy 284 ps laser pulse without tail modulation by stimulated Brillouin scattering[J]. Chinese Optics Letters, 2016, 14: 091901. doi: 10.3788/COL201614.091901
    [43] Xu Xiaozhen, Feng Chengyong, Diels J C. Optimizing sub-ns pulse compression for high energy application[J]. Optics Express, 2014, 22(11): 13904-13915. doi: 10.1364/OE.22.013904
    [44] Feng Chengyong, Xu Xiaozhen, Diels J C. High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids[J]. Optics Express, 2017, 25(11): 12421-12434. doi: 10.1364/OE.25.012421
    [45] Yuan Hang, Wang Yulei, Lü Zhiwei, et al. Theoretical investigation on 200 ps laser pulses amplification based on stimulated Brillouin scattering[J]. Acta Optica Sinica, 2016, 36: 0914003. doi: 10.3788/AOS201636.0914003
    [46] Damzen M J, Hutchinson H. Laser pulse compression by stimulated Brillouin scattering in tapered waveguides[J]. IEEE Journal of Quantum Electronics, 1983, 19(1): 7-14. doi: 10.1109/JQE.1983.1071718
    [47] Hon D T. Pulse compression by stimulated Brillouin scattering[J]. Optics Letters, 1980, 5(12): 516-518. doi: 10.1364/OL.5.000516
    [48] Davydov M A, Shipilov K F, Shmaonov T A. Formation of highly compressed stimulated Brillouin scattering pulses in liquids[J]. Soviet Journal of Quantum Electronics, 1986, 16(10): 1402-1403. doi: 10.1070/QE1986v016n10ABEH007597
    [49] Neshev D, Velchev I, Majewski W A, et al. SBS pulse compression to 200 ps in a compact single-cell setup[J]. Applied Physics B, 1999, 68(4): 671-675. doi: 10.1007/s003400050684
    [50] 郭琦, 吕志伟, 朱成禹. 双级受激布里渊散射压缩获得高质量窄脉冲波形[J]. 强激光与粒子束, 2010, 22(2):265-269. (Guo Qi, Lü Zhiwei, Zhu Chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(2): 265-269 doi: 10.3788/HPLPB20102202.0265
    [51] Mitra A, Yoshida H, Fujita H, et al. Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J[J]. Japanese Journal of Applied Physics, 2006, 45(3R): 1607-1611.
    [52] Bai Zhenxu, Wang Yulei, Lü Zhiwei, et al. Efficient KDP frequency doubling SBS pulse compressed 532 nm hundred picosecond laser[J]. Optik, 2016, 127(20): 9201-9205. doi: 10.1016/j.ijleo.2016.07.021
    [53] Schiemann S, Ubachs W, Hogervorst W. Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup[J]. IEEE Journal of Quantum Electronics, 1997, 33(3): 358-366. doi: 10.1109/3.556004
    [54] Liu Zhaohong, Wang Yulei, Wang Hongli, et al. Pulse temporal compression by two-stage stimulated Brillouin scattering and laser-induced breakdown[J]. Applied Physics Letters, 2017, 110: 241108. doi: 10.1063/1.4986437
    [55] Bai Zhenxu, Wang Yulei, Lu Zhiwei, et al. Demonstration of an ultraviolet stimulated Brillouin scattering pulse compressed hundred picosecond laser in LiB3O5 crystals[J]. Journal of Optics, 2017, 19: 085502. doi: 10.1088/2040-8986/aa74d6
    [56] Fedosejevs R, Offenberger A. Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier[J]. IEEE Journal of Quantum Electronics, 2003, 21(10): 1558-1562.
    [57] Dane C B, Neuman W A, Hackel L A. High-energy SBS pulse compression[J]. IEEE Journal of Quantum Electronics, 1994, 30(8): 1907-1915. doi: 10.1109/3.301654
    [58] Yuan Hang, Wang Yulei, Lü Zhiwei, et al. Measurement of Brillouin gain coefficient in fluorocarbon liquid[J]. Chinese Optics Letters, 2016, 14(4): 041902. doi: 10.3788/COL201614.041902
    [59] Feng Chengyong, Xu Xiaozhen, Diels J C. Multi-joule, sub-200ps laser pulse generation via SBS sub-phonon lifetime pulse compression[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics. San Jose, California: IEEE, 2017: 1-2.
    [60] Xu Xiaozhen, Feng Chengyong, Diels J C. High energy pulse compression through two-pulse interaction mediated by stimulated Brillouin scattering in liquid fluorocarbon[C]//Proceedings of CLEO: 2013. San Jose, California: IEEE, 2013: 1-2.
    [61] Liu Zhaohong, Wang Yulei, Zhang Hengkang, et al. A 97-ps laser-pulse generation by two-stage stimulated Brillouin and Raman scattering[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics. San Jose, California: IEEE, 2017: 1-2.
    [62] Liu Zhaohong, Wang Yulei, Bai Zhenxu, et al. Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering[J]. Optics Express, 2018, 26(18): 23051-23060. doi: 10.1364/OE.26.023051
    [63] Bai Zhenxu, Wang Yulei, Lü Zhiwei, et al. Research progress of serial laser beam combination based on stimulated Brillouin amplification[J]. Laser & Optoelectronics Progress, 2015, 52: 110004.
    [64] Zhu Xuehua, Lü Zhiwei, Wang Yulei. High stability, single frequency, 300 mJ, 130 ps laser pulse generation based on stimulated Brillouin scattering pulse compression[J]. Laser and Particle Beams, 2014, 33(1): 11-15.
    [65] Yoshida H, Kmetik V, Fujita H, et al. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror[J]. Applied Optics, 1997, 36(16): 3739-3730. doi: 10.1364/AO.36.003739
    [66] 哈斯乌力吉, 李杏, 郭翔宇, 等. 受激布里渊散射介质——全氟聚醚的温度特性研究[J]. 物理学报, 2010, 59(12):8554-8558. (Hasi Wuliji, Li Xing, Guo Xiangyu, et al. Investigation on stimulated Brillouin scattering medium—perfluoropolyether at high and low temperatures[J]. Acta Physica Sinica, 2010, 59(12): 8554-8558 doi: 10.7498/aps.59.8554
    [67] Hasi Wuliji, Lü Zhiwei, Li Qiang, et al. Study on two-cell stimulated Brillouin scattering system with mixture medium[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2007, 50(2): 144-151. doi: 10.1007/s11433-007-0015-0
    [68] 哈斯乌力吉, 吕志伟, 刘述杰, 等. 混合介质的SBS参数随混合比变化的研究[J]. 物理学报, 2008, 57(5):2976-2980. (Hasi Wuliji, Lü Zhiwei, Liu Shujie, et al. Study on variations of stimulated Brillouin scattering parameters of mixed media with mixing ratio[J]. Acta Physica Sinica, 2008, 57(5): 2976-2980 doi: 10.3321/j.issn:1000-3290.2008.05.057
    [69] 哈斯乌力吉, 李杏, 郭翔宇, 等. 选用混合介质优化介质和控制受激布里渊散射特性的研究[J]. 物理学报, 2011, 60:034208. (Hasi Wuliji, Li Xing, Guo Xiangyu, et al. Optimization of medium and control characteristics of stimulated Brillouin scattering based on mixed media[J]. Acta Physica Sinica, 2011, 60: 034208 doi: 10.7498/aps.60.034208
    [70] Yuan Hang, Wang Yulei, Lü Zhiwei, et al. Small-scale self-focusing of 200 ps laser pulses in Brillouin amplification[J]. Chinese Physics B, 2015, 24: 094210. doi: 10.1088/1674-1056/24/9/094210
    [71] Hasi Wujili, Lü Zhiwei, He Weiming, et al. Experimental investigation on the improvement of SBS characteristics by purifying the mediums[J]. Chinese Optics Letters, 2004, 2(12): 718-721.
    [72] Yoshida H, Fujita H, Nakatsuka M, et al. Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength[J]. Laser and Particle Beams, 2007, 25(3): 481-488. doi: 10.1017/S0263034607000596
    [73] Yoshida H, Fujita H, Nakatsuka M, et al. Compact temporal-pulse-compressor used in fused-silica glass at 1064 nm wavelength[J]. Japanese Journal of Applied Physics, 2007, 46(1L): L80-L82.
    [74] Marcus G, Pearl S, Pasmanik G. Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm[J]. Journal of Applied Physics, 2008, 103: 103105. doi: 10.1063/1.2931001
    [75] Wang Hongli, Cha S, Wang Yulei, et al. SBS pulse compression using bulk fused silica by diode-pumped solid-state lasers at 1 kHz repetition rate[J]. Optics & Laser Technology, 2020, 128: 106258.
    [76] 刘泓鑫, 李永亮, 顾小琨, 等. 基于SBS超短脉冲激光器的介质研究[J]. 激光与红外, 2019, 49(4):387-394. (Liu Hongxin, Li Yongliang, Gu Xiaokun, et al. Research on medium for ultrashort pulse laser by SBS[J]. Laser & Infrared, 2019, 49(4): 387-394 doi: 10.3969/j.issn.1001-5078.2019.04.001
    [77] Kuwahara K, Takahashi E, Matsumoto Y, et al. Short-pulse generation by saturated KrF laser amplification of a steep Stokes pulse produced by two-step stimulated Brillouin scattering[J]. Journal of the Optical Society of America B, 2000, 17(11): 1943-1947. doi: 10.1364/JOSAB.17.001943
    [78] 王晓慧, 吕志伟, 林殿阳, 等. 宽带KrF激光抽运的受激布里渊散射反射率研究[J]. 物理学报, 2006, 55(3):1224-1230. (Wang Xiaohui, Lü Zhiwei, Lin Dianyang, et al. Stimulated Brillouin scattering reflection pumped by broadband KrF laser[J]. Acta Physica Sinica, 2006, 55(3): 1224-1230 doi: 10.3321/j.issn:1000-3290.2006.03.038
    [79] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩[J]. 物理学报, 2014, 63:054202. (Zhang Lei, Li Jinzeng. An unusual pulse compression of stimulated Brillouin scattering in water[J]. Acta Physica Sinica, 2014, 63: 054202 doi: 10.7498/aps.63.054202
    [80] Dement’ev A S, Demin I, Murauskas E, et al. Compression of pulses during their amplification in the field of a focused counterpropagating pump pulse of the same frequency and width in media with electrostriction nonlinearity[J]. Quantum Electronics, 2011, 41(2): 153-159. doi: 10.1070/QE2011v041n02ABEH014496
    [81] 王超, 吕志伟, 何伟明. 利用受激布里渊散射获得皮秒激光脉冲[J]. 强激光与粒子束, 2003, 15(12):1184-1186. (Wang Chao, Lu Zhiwei, He Weiming. Picosecond pulse generation by stimulated Brillouin scattering compressor[J]. High Power Laser and Particle Beams, 2003, 15(12): 1184-1186
    [82] Kuz’min A A, Kulagin O V, Rodchenkov V I. Formation of nanosecond SBS-compressed pulses for pumping an ultra-high power parametric amplifier[J]. Quantum Electronics, 2018, 48(4): 344-350. doi: 10.1070/QEL16677
    [83] Park H, Lim C, Yoshida H, et al. Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids[J]. Japanese Journal of Applied Physics, 2006, 45(6R): 5073-5075.
    [84] Kmetik V, Kanabe T, Fujita H. Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression[J]. The Review of Laser Engineering, 1998, 26(4): 322-327. doi: 10.2184/lsj.26.322
    [85] Yoshida H, Hatae T, Fujita H, et al. A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength[J]. Optics Express, 2009, 17(16): 13654-13662. doi: 10.1364/OE.17.013654
    [86] Kuwahara K, Takahashi E, Matsumoto Y, et al. High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge[C]//Proceedings of SPIE 4424, ECLIM 2000: 26th European Conference on Laser Interaction with Matter. Prague, Czech Republic: SPIE, 2000.
    [87] Kmetik V, Fiedorowicz H, Andreev A A, et al. Reliable stimulated Brillouin scattering compression of Nd: YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz[J]. Applied Optics, 1998, 37(30): 7085-7090. doi: 10.1364/AO.37.007085
    [88] Hasi W L J, Qiao Z, Cheng S X, et al. Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770[J]. Optics Communications, 2013, 311: 375-379. doi: 10.1016/j.optcom.2013.05.056
    [89] Hasi W L J, Wang X Y, Cheng S X, et al. Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds[J]. Laser and Particle Beams, 2013, 31(2): 301-305. doi: 10.1017/S0263034612001097
    [90] Guo X Y, Hasi W L J, Zhong Z M, et al. Research on the SBS mediums used in high peak power laser system and their selection principle[J]. Laser and Particle Beams, 2012, 30(4): 525-530. doi: 10.1017/S0263034612000390
    [91] 仲召明. SBS百皮秒脉冲压缩介质研究[D]. 哈尔滨: 哈尔滨工业大学, 2012: 43-46.

    Zhong Zhaoming. Research on the media for hundred picoseconds pulse compression by SBS[D]. Harbin: Harbin Institute of Technology, 2012: 43-46
    [92] Hasi Wuliji, Zhong Zhaoming, Qiao Zhi, et al. The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering[J]. Optics Communications, 2012, 285(16): 3541-3544. doi: 10.1016/j.optcom.2012.04.008
    [93] Hasi Wuliji, Zhao Hang, Lin Dianyang, et al. Characteristics of perfluorinated amine media for stimulated Brillouin scattering in hundreds of picoseconds pulse compression at 532 nm[J]. Chinese Optics Letters, 2015, 13: 061901. doi: 10.3788/COL201513.061901
    [94] Yuan H, Lu Z W, Wang Y L, et al. Hundred picoseconds laser pulse amplification based on scalable two-cells Brillouin amplifier[J]. Laser and Particle Beams, 2014, 32(3): 369-374. doi: 10.1017/S0263034614000238
    [95] Yuan Hang, Wang Yulei, Zhu Chengyu, et al. Investigation of sub-phonon lifetime pulse amplification in active frequency matching stimulated Brillouin scattering[J]. Optics Express, 2019, 27(12): 16661-16670. doi: 10.1364/OE.27.016661
    [96] Chalus O, Diels J C. Lifetime of fluorocarbon for high-energy stimulated Brillouin scattering[J]. Journal of the Optical Society of America B, 2007, 24(3): 606-608. doi: 10.1364/JOSAB.24.000606
    [97] Wang Hongli, Cha S, Kong Hongjin, et al. Sub-nanosecond stimulated Brillouin scattering pulse compression using HT270 for kHz repetition rate operation[J]. Optics Express, 2019, 27(21): 29789-29802. doi: 10.1364/OE.27.029789
    [98] Tomov I V, Fedosejevs R, McKen D C D. Stimulated Brillouin scattering of KrF laser radiation in dichlorodifluoromethane[J]. IEEE Journal of Quantum Electronics, 1985, 21(1): 9-11. doi: 10.1109/JQE.1985.1072533
    [99] 王超, 吕志伟, 林殿阳, 等. 介质参数对受激布里渊散射脉宽压缩的影响[J]. 强激光与粒子束, 2002, 14(5):713-716. (Wang Chao, Lü Zhiwei, Lin Dianyang, et al. Dependence of pulse duration on parameters of medium in stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 2002, 14(5): 713-716
    [100] 哈斯乌力吉, 吕志伟, 何伟明, 等. 介质参数对受激布里渊散射特性的影响[J]. 强激光与粒子束, 2005, 17(1):51-54. (Hasi Wuliji, Lü Zhiwei, He Weiming, et al. Influence of medium parameters on the characteristics of stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 2005, 17(1): 51-54
    [101] 林殿阳, 蒋萧村, 王淑杰, 等. 宽带KrF激光抽运SF6受激布里渊散射的脉宽稳定性[J]. 中国激光, 2008, 35(2):163-167. (Lin Dianyang, Jiang Xiaocun, Wang Shujie, et al. Pulse duration stability of stimulated Brillouin scattering in SF6 pumped by a broadband KrF laser[J]. Chinese Journal of Lasers, 2008, 35(2): 163-167 doi: 10.3321/j.issn:0258-7025.2008.02.001
    [102] 远航. 基于主动频率匹配SBS的百皮秒激光脉冲放大技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 43-44.

    Yuan Hang. Investigation on amplification of hundred picoseconds laser pulses via active frequency matching stimulated Brillouin scattering[D]. Harbin: Harbin Institute of Technology, 2018: 43-44
    [103] 王雪阳. SBS百皮秒脉冲压缩特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 27-28.

    Wang Xueyang. Research on the compression properties for generating SBS pulse of hundreds picosecond[D]. Harbin: Harbin Institute of Technology, 2013: 27-28
    [104] Kong Hongjin, Beak D H. Prepulse technique for preserving the pulse shape of the stimulated Brillouin scattering[C]//Proceedings of SPIE 6454, High Energy/Average Power Lasers and Intense Beam Applications. San Jose, California, United States: SPIE, 2007: 64540E.
    [105] 郭少锋, 陆启生, 程湘爱, 等. 光学透明材料中瞬态SBS过程的数值研究[J]. 物理学报, 2004, 53(1):99-104. (Guo Shaofeng, Lu Qisheng, Cheng Xiangai, et al. Numerical study for transient SBS process in transparent optical materials[J]. Acta Physica Sinica, 2004, 53(1): 99-104 doi: 10.3321/j.issn:1000-3290.2004.01.020
    [106] Liu Zhaohong, Wang Yulei, Wang Yirui, et al. Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime[J]. Optics Express, 2018, 26(5): 5701-5710. doi: 10.1364/OE.26.005701
    [107] 王超, 吕志伟, 林殿阳, 等. 利用受激布里渊散射压缩获得小于介质1/4超声振荡周期的激光脉冲[J]. 中国激光, 2006, 33(s):226-228. (Wang Chao, Lü Zhiwei, Lin Dianyang, et al. Laser pulse with duration shorter than 1/4 of hypersound oscillation period of medium achieved by stimulated Brillouin compressor[J]. Chinese Journal of Lasers, 2006, 33(s): 226-228
    [108] 成思勋. 全氟胺系列介质的SBS百皮秒脉冲压缩特性研究[D]. 哈尔滨: 哈尔滨工业大学. 2014: 23-24.

    Cheng Sixun. Research on the series media of perfluoroamine for hundred picoseconds pulse compression by SBS[D]. Harbin: Harbin Institute of Technology, 2014: 23-24
    [109] 李杏. 基于短寿命介质SBS短脉冲压缩的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 27-29.

    Li Xing. Investigation on SBS short pulse compression based on medium with short phonon lifetime[D]. Harbin: Harbin Institute of Technology, 2011: 27-29
    [110] Brillouin L. Diffussion of light and X-rays by a homogeneous transparent bady[J]. Annales of Physique, 1922, 9(17): 88-122. doi: 10.1051/anphys/192209170088
    [111] Chiao R Y, Townes C H, Stoicheff B P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves[J]. Physical Review Letters, 1964, 12(21): 592-595. doi: 10.1103/PhysRevLett.12.592
    [112] Brewer R G, Rieckhoff K E. Stimulated Brillouin scattering in liquids[J]. Physical Review Letters, 1964, 13(11): 334-336. doi: 10.1103/PhysRevLett.13.334
    [113] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 1972, 21(11): 539-541. doi: 10.1063/1.1654249
    [114] Hon D T. Applications of wavefront reversal by stimulated Brillouin scattering[J]. Optical Engineering, 1982, 21: 212252.
    [115] Kubeček V, Hamal K, Procházka I, et al. Compression of the Nd: YAP laser pulse by two-stage stimulated backward scattering[J]. Optics Communications, 1989, 73(3): 251-256. doi: 10.1016/0030-4018(89)90094-1
    [116] Velchev I, Neshev D, Hogervorst W, et al. Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering[J]. IEEE Journal of Quantum Electronics, 1999, 35(12): 1812-1816. doi: 10.1109/3.806589
    [117] Kong Hongjin, Lee S K, Lee D W, et al. Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation[J]. Applied Physics Letters, 2005, 86: 051111. doi: 10.1063/1.1857088
    [118] Yuan Hang, Wang Yulei, Lu Zhiwei, et al. Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse[J]. Optics Letters, 2018, 43(3): 511-514. doi: 10.1364/OL.43.000511
    [119] 刘照虹, 李森森, 白振旭, 等. 受激布里渊散射Stokes脉冲展宽现象抑制研究[J]. 光电技术应用, 2019, 34(2):17-21. (Liu Zhaohong, Li Sensen, Bai Zhenxu, et al. Stokes duration broadening suppressing in the process of stimulated Brillouin scattering compression[J]. Electro-Optic Technology Application, 2019, 34(2): 17-21 doi: 10.3969/j.issn.1673-1255.2019.02.004
    [120] Wang Hongli, Cha S, Kong Hongjin, et al. Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation[J]. Optics Express, 2019, 27(7): 9895-9905. doi: 10.1364/OE.27.009895
    [121] Andreev N, Kulagin O P, Palashov O V, et al. SBS of repetitively pulsed radiation and possibility of increasing the pump average power[C]//Proceedings of SPIE 2633, Solid State Lasers for Application to Inertial Confinement Fusion. Monterey, CA, United States: SPIE, 1995.
    [122] Buzyalis R R, Dementjev A S, Kosenko E K. Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG: Nd laser[J]. Soviet Journal of Quantum Electronics, 1985, 15(10): 1335-1337. doi: 10.1070/QE1985v015n10ABEH007759
    [123] Gowers C W, Brown B W, Fajemirokun H, et al. Recent developments in LIDAR Thomson scattering measurements on JET (invited)[J]. Review of Scientific Instruments, 1995, 66(1): 471-475. doi: 10.1063/1.1146321
    [124] Kim H J, Lee E G, Kim C Y. A high-multi target resolution focal plane array-based laser detection and ranging sensor[J]. Sensors, 2019, 19: 1210. doi: 10.3390/s19051210
    [125] 向祥军, 李剑彬, 周丹丹, 等. 高峰值功率光纤脉冲激光系统[J]. 中国激光, 2018, 45:0601002. (Xiang Xiangjun, Li Jianbin, Zhou Dandan, et al. High-peak-power fiber pulse laser system[J]. Chinese Journal of Lasers, 2018, 45: 0601002 doi: 10.3788/CJL201845.0601002
    [126] Yu Tianbiao, Bao Yiting. Research on manufacturing technology of thin-walled parts of Fe105 metal based on laser cladding[J]. Journal of Physics: Conference Series, 2019, 1187: 032043. doi: 10.1088/1742-6596/1187/3/032043
    [127] Kang Zhijun, Fan Zhongwei, Huang Yutao, et al. High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM[J]. Optics Express, 2018, 26(6): 6560-6571. doi: 10.1364/OE.26.006560
    [128] Bourne O L, Alcock A J. Simplified technique for subnanosecond pulse generation and injection mode-locking of a XeCl laser[J]. Applied Physics B, 1985, 36(4): 181-185. doi: 10.1007/BF00704572
    [129] Zhang Fangpei, Lou Qihong, Dong Jingxing, et al. Generation of 1.5~12 ns width-tunable 532 nm pulses by adopting laser-induced plasma shutter technique[J]. Optik, 2009, 120(5): 237-241. doi: 10.1016/j.ijleo.2007.09.001
    [130] Hasi W L J, Lu Z W, Lu H H, et al. Investigation on pulse compression based on stimulated Brillouin scattering and optical breakdown[J]. Applied Physics B, 2010, 98(2/3): 397-400.
    [131] Long Xin, Zou Weiwen, Chen Jianping. All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering[J]. Optics Express, 2016, 24(5): 5162-5171. doi: 10.1364/OE.24.005162
    [132] Long Xin, Zou Weiwen, Ji Yi, et al. Accurate measurement of time delay of broadband microwave signal via high-repetition-rate pulse train probing SBS based all-optical pulse compression[J]. Optics Express, 2017, 25(26): 33330-33337. doi: 10.1364/OE.25.033330
    [133] Ji Yi, Zou Weiwen, Long Xin, et al. Signal-to-noise ratio enhancement of stimulated Brillouin scattering based pulse compression of an ultrabroad microwave signal by use of a dispersion compensation fiber[J]. Optics Letters, 2017, 42(15): 2980-2983. doi: 10.1364/OL.42.002980
    [134] Chen Xudong, Chang Chengcheng, Pu Jixiong. Stimulated Brillouin scattering phase conjugation of light beams carrying orbit angular momentum[J]. Chinese Optics Letters, 2017, 15: 030006. doi: 10.3788/COL201715.030006
    [135] Gao Wei, Mu Chunyuan, Li Hongwei, et al. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction[J]. Applied Physics Letters, 2015, 107: 041119. doi: 10.1063/1.4927699
    [136] Zhu Zhihan, Gao Wei, Mu Chunyuan, et al. Reversible orbital angular momentum photon–phonon conversion[J]. Optica, 2016, 3(2): 212-217. doi: 10.1364/OPTICA.3.000212
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  2306
  • HTML全文浏览量:  638
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-05
  • 修回日期:  2021-04-13
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回