Research progress of stimulated Brillouin scattering pulse compression technique
-
摘要:
受激布里渊散射(SBS)作为三阶光学效应广泛应用于激光组束、分布式光纤传感、布里渊激光器等领域。近年来,SBS脉冲压缩亦得到特殊关注。基于布里渊放大过程中的能量转移特性,SBS脉冲压缩技术能够将ns量级脉冲压缩至亚ns量级,峰值功率可提升1~2个数量级。系统介绍了SBS脉冲压缩基本理论,综合论述了SBS压缩器结构、增益介质、泵浦脉冲等因素对脉冲压缩特性的影响,并对SBS脉冲压缩发展趋势进行了展望,为今后SBS特性的研究提供了有益参考,也为高重频、高能量激光的获取提供了可行方案。
Abstract:Stimulated Brillouin scattering (SBS) as a third-order optical effect is widely used in laser beam combination, distributed fiber sensing, Brillouin lasers and other fields. In recent years, SBS pulse compression has also received special attention. Based on the energy transfer characteristics of the Brillouin amplification process, SBS pulse compression technology can compress nanosecond pulses to sub-nanosecond levels, and the peak power can be increased by 1-2 orders of magnitude. This paper systematically introduces the basic theory of SBS pulse compression, comprehensively discusses the influence of SBS compressor structure, gain medium, pump pulse and other factors on pulse compression characteristics, and looks forward to the development trends of SBS pulse compression. It provides a useful reference for the future study of SBS characteristics and a feasible scheme for the acquisition of high repetition frequency and high energy laser.
-
Key words:
- stimulated Brillouin scattering /
- pulse compression /
- gain medium /
- phonon lifetime /
- pump pulse
-
表 1 常用氟系列化合物的SBS参数
Table 1. SBS parameters of fluorine compounds in common use
SBS medium refractive index frequency shift /MHz phonon lifetime /ns gain coefficient /(cm·GW−1) reference FC-40 1.29 1075 0.20 1.8 [94] FC-43 1.30 3300 0.15 1.3 [58, 95] FC-70 1.30 2133 0.80 0.2 [58] FC-72 1.25 1100 1.20 6.0 [43, 96] FC-770 1.29 1350 0.57 3.5 [40] FC-3283 1.27 2600 0.59 4.1 [89, 95] HT-110 1.28 553 0.60 4.7 [97] HT-135 1.28 1109 0.40 3.0 [92] HT-270 1.28 8401 0.10 2.3 [97] 表 2 泵浦宽度对SBS压缩影响数值仿真参数设置
Table 2. Parameter setting of numerical simulation for the influence of pump width on SBS compression
pump power density/(MW·cm−2) Stokes power density/(MW·cm−2) gain coefficient/(cm·GW−1) phonon lifetime/ns pump width/ns 500 500 0.18 0.3 2~5 -
[1] 张昀. 基于SBS脉冲压缩产生百皮秒脉冲及尾部调制抑制的研究[D]. 哈尔滨: 哈尔滨工业大学, 2012: 9.Zhang Yun. Investigation on obtaining a hundreds ps pulse and suppressing its tail modulations based on SBS pulse compression[D]. Harbin: Harbin Institute of Technology, 2012: 9 [2] 徐涛, 尚万里, 魏惠月, 等. 基于神光Ⅲ原型装置的冲击点火分解实验[J]. 强激光与粒子束, 2015, 27:052002. (Xu Tao, Shang Wanli, Wei Huiyue, et al. Resolvability experiments of shock ignition implemented on Shenguang Ⅲ prototype laser facility[J]. High Power Laser and Particle Beams, 2015, 27: 052002 doi: 10.3788/HPLPB20152705.52002 [3] Perkins L J, Betti R, LaFortune K N, et al. Shock ignition: a new approach to high gain inertial confinement fusion on the National Ignition Facility[J]. Physical Review Letters, 2009, 103: 045004. doi: 10.1103/PhysRevLett.103.045004 [4] Betti R, Zhou C D, Anderson K S, et al. Shock ignition of thermonuclear fuel with high areal density[J]. Physical Review Letters, 2007, 98: 155001. doi: 10.1103/PhysRevLett.98.155001 [5] Quinlan F, Gee S, Ozharar S, et al. Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser[J]. Optics Letters, 2006, 31(19): 2870-2872. doi: 10.1364/OL.31.002870 [6] Yang Shiquan, Ponomarev E A, Bao Xiaoyi. 40-GHz transform-limited pulse generation from FM oscillation fiber laser with external cavity chirp compensation[J]. IEEE Photonics Technology Letters, 2004, 16(7): 1631-1633. doi: 10.1109/LPT.2004.828359 [7] 曹文华, 刘颂豪, 廖常俊, 等. 单模光纤中皮秒啁啾脉冲压缩[J]. 光学学报, 1995, 15(2):180-185. (Cao Wenhua, Liu Songhao, Liao Changjun, et al. Picosecond chirped pulse compression in single-mode fibers[J]. Acta Optica Sinica, 1995, 15(2): 180-185 doi: 10.3321/j.issn:0253-2239.1995.02.011 [8] 曹文华, 张有为, 刘颂豪, 等. 光纤正常色散区基于脉冲对交叉相位调制的亮脉冲压缩[J]. 物理学报, 1997, 46(5):919-928. (Cao Wenhua, Zhang Youwei, Liu Songhao, et al. Compression of bright optical pulse by pulse pair in the normal-dispersion regime of single-mode fibers[J]. Acta Physica Sinica, 1997, 46(5): 919-928 doi: 10.3321/j.issn:1000-3290.1997.05.013 [9] 曹文华, 刘颂豪, 廖常俊, 等. 单模光纤中基于暗孤子交叉相位调制的亮脉冲压缩[J]. 光学学报, 1995, 15(3):281-286. (Cao Wenhua, Liu Songhao, Liao Changjun, et al. Compression of bright optical pulses by dark solitons in the normal dispersion region of single-mode fibers[J]. Acta Optica Sinica, 1995, 15(3): 281-286 doi: 10.3321/j.issn:0253-2239.1995.03.006 [10] Kibler B, Fischer R, Lacourt P A, et al. Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre[J]. Electronics Letters, 2007, 43(17): 915-916. doi: 10.1049/el:20071726 [11] Kibler B, Billet C, Lacourt P A, et al. All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons[J]. IEEE Photonics Technology Letters, 2006, 18(17): 1831-1833. doi: 10.1109/LPT.2006.880728 [12] Ma Yuanyuan, Hou Shanglin, Wang Daobin, et al. Effects of power and shape of pump light on pulse compression based on stimulated Brillouin Scattering[C]//Progress in Electromagnetics Research Symposium-Spring. St. Petersburg, Russia, IEEE, 2018: 1765-1767. [13] 王天齐. 基于SBS的逆阶梯脉冲产生技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 1.Wang Tianqi. Research on the generation of downward step pulse based on SBS[D]. Harbin: Harbin Institute of Technology, 2019: 1 [14] Lu Zhiwei, Gao Wei, He Weiming, et al. High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier[J]. Optics Express, 2009, 17(13): 10675-10680. doi: 10.1364/OE.17.010675 [15] Gao Wei, Hu Xiaobo, Sun Di, et al. Simultaneous generation and Brillouin amplification of a dark hollow beam with a liquid-core optical fiber[J]. Optics Express, 2012, 20(18): 20715-20720. doi: 10.1364/OE.20.020715 [16] Bel’dyugin I M, Efimkov V F, Mikhailov S I, et al. Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering[J]. Journal of Russian Laser Research, 2005, 26(1): 1-12. doi: 10.1007/s10946-005-0001-9 [17] Bai Zhenxu, Yuan Hang, Liu Zhaohong, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review[J]. Optical Materials, 2018, 75: 626-645. doi: 10.1016/j.optmat.2017.10.035 [18] Zhang Pingping, Hu Shuling, Chen Shuying, et al. A high-efficiency Brillouin fiber ring laser[J]. Chinese Optics Letters, 2009, 7(6): 495-497. doi: 10.3788/COL20090706.0495 [19] 孟洲, 陈默, 陈伟, 等. 光纤传感中的受激布里渊散射效应[J]. 应用科学学报, 2018, 36(1):20-40. (Meng Zhou, Chen Mo, Chen Wei, et al. Stimulated Brillouin scattering in optical fiber sensing systems[J]. Journal of Applied Sciences, 2018, 36(1): 20-40 doi: 10.3969/j.issn.0255-8297.2018.01.002 [20] Wang Shuangyi, Lu Zhiwei, Lin Dianyang, et al. Investigation of serial coherent laser beam combination based on Brillouin amplification[J]. Laser and Particle Beams, 2007, 25(1): 79-83. doi: 10.1017/S0263034607070127 [21] Wang Y L, Lü Z W, Wang S Y, et al. Investigation on efficiency of non-collinear serial laser beam combination based on Brillouin amplification[J]. Laser and Particle Beams, 2009, 27(4): 651-655. doi: 10.1017/S0263034609990383 [22] Guo Qi, Lu Zhiwei, Wang Yulei. Highly efficient Brillouin amplification of strong Stokes seed[J]. Applied Physics Letters, 2010, 96: 221107. doi: 10.1063/1.3435385 [23] Galindez-Jamioy C A, López-Higuera J M. Brillouin distributed fiber sensors: an overview and applications[J]. Journal of Sensors, 2012, 2012: 204121. [24] Xu Jinlong, Dong Yongkang, Zhang Zhaohui, et al. Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors[J]. Measurement Science and Technology, 2016, 27: 124017. doi: 10.1088/0957-0233/27/12/124017 [25] Dong Yongkang, Chen Liang, Bao Xiaoyi. Time-division multiplexing-based BOTDA over 100 km sensing length[J]. Optics Letters, 2011, 36(2): 277-279. doi: 10.1364/OL.36.000277 [26] Hill K O, Kawasaki B S, Johnson D C. CW Brillouin laser[J]. Applied Physics Letters, 1976, 28(10): 608-609. doi: 10.1063/1.88583 [27] Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors[J]. Applied Physics Letters, 2008, 92: 021120. doi: 10.1063/1.2831659 [28] Ostermeyer M, Kong H J, Kovalev V I, et al. Trends in stimulated Brillouin scattering and optical phase conjugation[J]. Laser and Particle Beams, 2008, 26(3): 297-362. doi: 10.1017/S0263034608000335 [29] Meng Hui, Eichler H J. Nd: YAG laser with a phase-conjugating mirror based on stimulated Brillouin scattering in SF6 gas[J]. Optics Letters, 1991, 16(8): 569-571. doi: 10.1364/OL.16.000569 [30] Song K Y, Abedin K S, Hotate K, et al. Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber[J]. Optics Express, 2006, 14(13): 5860-5865. doi: 10.1364/OE.14.005860 [31] Liu Jianguo, Cheng T H, Yeo Y K, et al. Stimulate Brillouin scattering based broadband tunable slow-light conversion in a highly nonlinear photonic crystal fiber[J]. Journal of Lightwave Technology, 2009, 27(10): 1279-1285. doi: 10.1109/JLT.2008.2007575 [32] Cheng Tonglei, Cherif R, Liao Meisong, et al. Stimulated Brillouin scattering of higher-order acoustic modes in four-core tellurite microstructured optical fiber[J]. Applied Physics Express, 2012, 5: 102501. doi: 10.1143/APEX.5.102501 [33] Bowers M W, Boyd R W. Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation[J]. IEEE Journal of Quantum Electronics, 1998, 34(4): 634-644. doi: 10.1109/3.663441 [34] Andreev N F, Palashov O V, Pasmanik G A, et al. Four-channel pulse-periodic Nd: YAG laser with diffraction-limited output radiation[J]. Quantum Electronics, 1997, 27(7): 565-569. doi: 10.1070/QE1997v027n07ABEH001010 [35] Scott A M, Ridley K D. A review of Brillouin-enhanced four-wave mixing[J]. IEEE Journal of Quantum Electronics, 1989, 25(3): 438-459. doi: 10.1109/3.18560 [36] Liu Hongxin, Li Yongliang, Yang Chao, et al. 1.35 ns SBS laser pulse[J]. Optik, 2019, 184: 394-398. doi: 10.1016/j.ijleo.2019.04.123 [37] Bai Zhenxu, Wang Yulei, Lu Zhiwei, et al. High compact, high quality single longitudinal mode hundred picoseconds laser based on stimulated Brillouin scattering pulse compression[J]. Applied Sciences, 2016, 6: 29. doi: 10.3390/app6010029 [38] 刘莉, 吕志伟, 何伟明, 等. 高功率激光器上的SBS脉冲压缩[J]. 激光杂志, 2000, 21(2):10-12. (Liu Li, Lü Zhiwei, He Weiming, et al. SBS pulse compression on high-power laser[J]. Laser Journal, 2000, 21(2): 10-12 doi: 10.3969/j.issn.0253-2743.2000.02.005 [39] 张祎. 高能激光抽运的受激布里渊散射相位共轭镜特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2006: 17-20.Zhang Yi. Investigation on the SBS phase conjugation mirror character of high energy laser pump[D]. Harbin: Harbin Institute of Technology, 2006: 17-20 [40] Yuan Hang, Wang Yulei, Lu Zhiwei, et al. Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression[J]. Optics Express, 2017, 25(13): 14378-14388. doi: 10.1364/OE.25.014378 [41] Feng Chengyong, Xu Xiaozhen, Diels J C. Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm[J]. Optics Letters, 2014, 39(12): 3367-3370. doi: 10.1364/OL.39.003367 [42] Liu Zhaohong, Wang Yulei, Wang Yirui, et al. Generation of high-energy 284 ps laser pulse without tail modulation by stimulated Brillouin scattering[J]. Chinese Optics Letters, 2016, 14: 091901. doi: 10.3788/COL201614.091901 [43] Xu Xiaozhen, Feng Chengyong, Diels J C. Optimizing sub-ns pulse compression for high energy application[J]. Optics Express, 2014, 22(11): 13904-13915. doi: 10.1364/OE.22.013904 [44] Feng Chengyong, Xu Xiaozhen, Diels J C. High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids[J]. Optics Express, 2017, 25(11): 12421-12434. doi: 10.1364/OE.25.012421 [45] Yuan Hang, Wang Yulei, Lü Zhiwei, et al. Theoretical investigation on 200 ps laser pulses amplification based on stimulated Brillouin scattering[J]. Acta Optica Sinica, 2016, 36: 0914003. doi: 10.3788/AOS201636.0914003 [46] Damzen M J, Hutchinson H. Laser pulse compression by stimulated Brillouin scattering in tapered waveguides[J]. IEEE Journal of Quantum Electronics, 1983, 19(1): 7-14. doi: 10.1109/JQE.1983.1071718 [47] Hon D T. Pulse compression by stimulated Brillouin scattering[J]. Optics Letters, 1980, 5(12): 516-518. doi: 10.1364/OL.5.000516 [48] Davydov M A, Shipilov K F, Shmaonov T A. Formation of highly compressed stimulated Brillouin scattering pulses in liquids[J]. Soviet Journal of Quantum Electronics, 1986, 16(10): 1402-1403. doi: 10.1070/QE1986v016n10ABEH007597 [49] Neshev D, Velchev I, Majewski W A, et al. SBS pulse compression to 200 ps in a compact single-cell setup[J]. Applied Physics B, 1999, 68(4): 671-675. doi: 10.1007/s003400050684 [50] 郭琦, 吕志伟, 朱成禹. 双级受激布里渊散射压缩获得高质量窄脉冲波形[J]. 强激光与粒子束, 2010, 22(2):265-269. (Guo Qi, Lü Zhiwei, Zhu Chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(2): 265-269 doi: 10.3788/HPLPB20102202.0265 [51] Mitra A, Yoshida H, Fujita H, et al. Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J[J]. Japanese Journal of Applied Physics, 2006, 45(3R): 1607-1611. [52] Bai Zhenxu, Wang Yulei, Lü Zhiwei, et al. Efficient KDP frequency doubling SBS pulse compressed 532 nm hundred picosecond laser[J]. Optik, 2016, 127(20): 9201-9205. doi: 10.1016/j.ijleo.2016.07.021 [53] Schiemann S, Ubachs W, Hogervorst W. Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup[J]. IEEE Journal of Quantum Electronics, 1997, 33(3): 358-366. doi: 10.1109/3.556004 [54] Liu Zhaohong, Wang Yulei, Wang Hongli, et al. Pulse temporal compression by two-stage stimulated Brillouin scattering and laser-induced breakdown[J]. Applied Physics Letters, 2017, 110: 241108. doi: 10.1063/1.4986437 [55] Bai Zhenxu, Wang Yulei, Lu Zhiwei, et al. Demonstration of an ultraviolet stimulated Brillouin scattering pulse compressed hundred picosecond laser in LiB3O5 crystals[J]. Journal of Optics, 2017, 19: 085502. doi: 10.1088/2040-8986/aa74d6 [56] Fedosejevs R, Offenberger A. Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier[J]. IEEE Journal of Quantum Electronics, 2003, 21(10): 1558-1562. [57] Dane C B, Neuman W A, Hackel L A. High-energy SBS pulse compression[J]. IEEE Journal of Quantum Electronics, 1994, 30(8): 1907-1915. doi: 10.1109/3.301654 [58] Yuan Hang, Wang Yulei, Lü Zhiwei, et al. Measurement of Brillouin gain coefficient in fluorocarbon liquid[J]. Chinese Optics Letters, 2016, 14(4): 041902. doi: 10.3788/COL201614.041902 [59] Feng Chengyong, Xu Xiaozhen, Diels J C. Multi-joule, sub-200ps laser pulse generation via SBS sub-phonon lifetime pulse compression[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics. San Jose, California: IEEE, 2017: 1-2. [60] Xu Xiaozhen, Feng Chengyong, Diels J C. High energy pulse compression through two-pulse interaction mediated by stimulated Brillouin scattering in liquid fluorocarbon[C]//Proceedings of CLEO: 2013. San Jose, California: IEEE, 2013: 1-2. [61] Liu Zhaohong, Wang Yulei, Zhang Hengkang, et al. A 97-ps laser-pulse generation by two-stage stimulated Brillouin and Raman scattering[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics. San Jose, California: IEEE, 2017: 1-2. [62] Liu Zhaohong, Wang Yulei, Bai Zhenxu, et al. Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering[J]. Optics Express, 2018, 26(18): 23051-23060. doi: 10.1364/OE.26.023051 [63] Bai Zhenxu, Wang Yulei, Lü Zhiwei, et al. Research progress of serial laser beam combination based on stimulated Brillouin amplification[J]. Laser & Optoelectronics Progress, 2015, 52: 110004. [64] Zhu Xuehua, Lü Zhiwei, Wang Yulei. High stability, single frequency, 300 mJ, 130 ps laser pulse generation based on stimulated Brillouin scattering pulse compression[J]. Laser and Particle Beams, 2014, 33(1): 11-15. [65] Yoshida H, Kmetik V, Fujita H, et al. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror[J]. Applied Optics, 1997, 36(16): 3739-3730. doi: 10.1364/AO.36.003739 [66] 哈斯乌力吉, 李杏, 郭翔宇, 等. 受激布里渊散射介质——全氟聚醚的温度特性研究[J]. 物理学报, 2010, 59(12):8554-8558. (Hasi Wuliji, Li Xing, Guo Xiangyu, et al. Investigation on stimulated Brillouin scattering medium—perfluoropolyether at high and low temperatures[J]. Acta Physica Sinica, 2010, 59(12): 8554-8558 doi: 10.7498/aps.59.8554 [67] Hasi Wuliji, Lü Zhiwei, Li Qiang, et al. Study on two-cell stimulated Brillouin scattering system with mixture medium[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2007, 50(2): 144-151. doi: 10.1007/s11433-007-0015-0 [68] 哈斯乌力吉, 吕志伟, 刘述杰, 等. 混合介质的SBS参数随混合比变化的研究[J]. 物理学报, 2008, 57(5):2976-2980. (Hasi Wuliji, Lü Zhiwei, Liu Shujie, et al. Study on variations of stimulated Brillouin scattering parameters of mixed media with mixing ratio[J]. Acta Physica Sinica, 2008, 57(5): 2976-2980 doi: 10.3321/j.issn:1000-3290.2008.05.057 [69] 哈斯乌力吉, 李杏, 郭翔宇, 等. 选用混合介质优化介质和控制受激布里渊散射特性的研究[J]. 物理学报, 2011, 60:034208. (Hasi Wuliji, Li Xing, Guo Xiangyu, et al. Optimization of medium and control characteristics of stimulated Brillouin scattering based on mixed media[J]. Acta Physica Sinica, 2011, 60: 034208 doi: 10.7498/aps.60.034208 [70] Yuan Hang, Wang Yulei, Lü Zhiwei, et al. Small-scale self-focusing of 200 ps laser pulses in Brillouin amplification[J]. Chinese Physics B, 2015, 24: 094210. doi: 10.1088/1674-1056/24/9/094210 [71] Hasi Wujili, Lü Zhiwei, He Weiming, et al. Experimental investigation on the improvement of SBS characteristics by purifying the mediums[J]. Chinese Optics Letters, 2004, 2(12): 718-721. [72] Yoshida H, Fujita H, Nakatsuka M, et al. Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength[J]. Laser and Particle Beams, 2007, 25(3): 481-488. doi: 10.1017/S0263034607000596 [73] Yoshida H, Fujita H, Nakatsuka M, et al. Compact temporal-pulse-compressor used in fused-silica glass at 1064 nm wavelength[J]. Japanese Journal of Applied Physics, 2007, 46(1L): L80-L82. [74] Marcus G, Pearl S, Pasmanik G. Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm[J]. Journal of Applied Physics, 2008, 103: 103105. doi: 10.1063/1.2931001 [75] Wang Hongli, Cha S, Wang Yulei, et al. SBS pulse compression using bulk fused silica by diode-pumped solid-state lasers at 1 kHz repetition rate[J]. Optics & Laser Technology, 2020, 128: 106258. [76] 刘泓鑫, 李永亮, 顾小琨, 等. 基于SBS超短脉冲激光器的介质研究[J]. 激光与红外, 2019, 49(4):387-394. (Liu Hongxin, Li Yongliang, Gu Xiaokun, et al. Research on medium for ultrashort pulse laser by SBS[J]. Laser & Infrared, 2019, 49(4): 387-394 doi: 10.3969/j.issn.1001-5078.2019.04.001 [77] Kuwahara K, Takahashi E, Matsumoto Y, et al. Short-pulse generation by saturated KrF laser amplification of a steep Stokes pulse produced by two-step stimulated Brillouin scattering[J]. Journal of the Optical Society of America B, 2000, 17(11): 1943-1947. doi: 10.1364/JOSAB.17.001943 [78] 王晓慧, 吕志伟, 林殿阳, 等. 宽带KrF激光抽运的受激布里渊散射反射率研究[J]. 物理学报, 2006, 55(3):1224-1230. (Wang Xiaohui, Lü Zhiwei, Lin Dianyang, et al. Stimulated Brillouin scattering reflection pumped by broadband KrF laser[J]. Acta Physica Sinica, 2006, 55(3): 1224-1230 doi: 10.3321/j.issn:1000-3290.2006.03.038 [79] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩[J]. 物理学报, 2014, 63:054202. (Zhang Lei, Li Jinzeng. An unusual pulse compression of stimulated Brillouin scattering in water[J]. Acta Physica Sinica, 2014, 63: 054202 doi: 10.7498/aps.63.054202 [80] Dement’ev A S, Demin I, Murauskas E, et al. Compression of pulses during their amplification in the field of a focused counterpropagating pump pulse of the same frequency and width in media with electrostriction nonlinearity[J]. Quantum Electronics, 2011, 41(2): 153-159. doi: 10.1070/QE2011v041n02ABEH014496 [81] 王超, 吕志伟, 何伟明. 利用受激布里渊散射获得皮秒激光脉冲[J]. 强激光与粒子束, 2003, 15(12):1184-1186. (Wang Chao, Lu Zhiwei, He Weiming. Picosecond pulse generation by stimulated Brillouin scattering compressor[J]. High Power Laser and Particle Beams, 2003, 15(12): 1184-1186 [82] Kuz’min A A, Kulagin O V, Rodchenkov V I. Formation of nanosecond SBS-compressed pulses for pumping an ultra-high power parametric amplifier[J]. Quantum Electronics, 2018, 48(4): 344-350. doi: 10.1070/QEL16677 [83] Park H, Lim C, Yoshida H, et al. Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids[J]. Japanese Journal of Applied Physics, 2006, 45(6R): 5073-5075. [84] Kmetik V, Kanabe T, Fujita H. Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression[J]. The Review of Laser Engineering, 1998, 26(4): 322-327. doi: 10.2184/lsj.26.322 [85] Yoshida H, Hatae T, Fujita H, et al. A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength[J]. Optics Express, 2009, 17(16): 13654-13662. doi: 10.1364/OE.17.013654 [86] Kuwahara K, Takahashi E, Matsumoto Y, et al. High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge[C]//Proceedings of SPIE 4424, ECLIM 2000: 26th European Conference on Laser Interaction with Matter. Prague, Czech Republic: SPIE, 2000. [87] Kmetik V, Fiedorowicz H, Andreev A A, et al. Reliable stimulated Brillouin scattering compression of Nd: YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz[J]. Applied Optics, 1998, 37(30): 7085-7090. doi: 10.1364/AO.37.007085 [88] Hasi W L J, Qiao Z, Cheng S X, et al. Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770[J]. Optics Communications, 2013, 311: 375-379. doi: 10.1016/j.optcom.2013.05.056 [89] Hasi W L J, Wang X Y, Cheng S X, et al. Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds[J]. Laser and Particle Beams, 2013, 31(2): 301-305. doi: 10.1017/S0263034612001097 [90] Guo X Y, Hasi W L J, Zhong Z M, et al. Research on the SBS mediums used in high peak power laser system and their selection principle[J]. Laser and Particle Beams, 2012, 30(4): 525-530. doi: 10.1017/S0263034612000390 [91] 仲召明. SBS百皮秒脉冲压缩介质研究[D]. 哈尔滨: 哈尔滨工业大学, 2012: 43-46.Zhong Zhaoming. Research on the media for hundred picoseconds pulse compression by SBS[D]. Harbin: Harbin Institute of Technology, 2012: 43-46 [92] Hasi Wuliji, Zhong Zhaoming, Qiao Zhi, et al. The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering[J]. Optics Communications, 2012, 285(16): 3541-3544. doi: 10.1016/j.optcom.2012.04.008 [93] Hasi Wuliji, Zhao Hang, Lin Dianyang, et al. Characteristics of perfluorinated amine media for stimulated Brillouin scattering in hundreds of picoseconds pulse compression at 532 nm[J]. Chinese Optics Letters, 2015, 13: 061901. doi: 10.3788/COL201513.061901 [94] Yuan H, Lu Z W, Wang Y L, et al. Hundred picoseconds laser pulse amplification based on scalable two-cells Brillouin amplifier[J]. Laser and Particle Beams, 2014, 32(3): 369-374. doi: 10.1017/S0263034614000238 [95] Yuan Hang, Wang Yulei, Zhu Chengyu, et al. Investigation of sub-phonon lifetime pulse amplification in active frequency matching stimulated Brillouin scattering[J]. Optics Express, 2019, 27(12): 16661-16670. doi: 10.1364/OE.27.016661 [96] Chalus O, Diels J C. Lifetime of fluorocarbon for high-energy stimulated Brillouin scattering[J]. Journal of the Optical Society of America B, 2007, 24(3): 606-608. doi: 10.1364/JOSAB.24.000606 [97] Wang Hongli, Cha S, Kong Hongjin, et al. Sub-nanosecond stimulated Brillouin scattering pulse compression using HT270 for kHz repetition rate operation[J]. Optics Express, 2019, 27(21): 29789-29802. doi: 10.1364/OE.27.029789 [98] Tomov I V, Fedosejevs R, McKen D C D. Stimulated Brillouin scattering of KrF laser radiation in dichlorodifluoromethane[J]. IEEE Journal of Quantum Electronics, 1985, 21(1): 9-11. doi: 10.1109/JQE.1985.1072533 [99] 王超, 吕志伟, 林殿阳, 等. 介质参数对受激布里渊散射脉宽压缩的影响[J]. 强激光与粒子束, 2002, 14(5):713-716. (Wang Chao, Lü Zhiwei, Lin Dianyang, et al. Dependence of pulse duration on parameters of medium in stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 2002, 14(5): 713-716 [100] 哈斯乌力吉, 吕志伟, 何伟明, 等. 介质参数对受激布里渊散射特性的影响[J]. 强激光与粒子束, 2005, 17(1):51-54. (Hasi Wuliji, Lü Zhiwei, He Weiming, et al. Influence of medium parameters on the characteristics of stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 2005, 17(1): 51-54 [101] 林殿阳, 蒋萧村, 王淑杰, 等. 宽带KrF激光抽运SF6受激布里渊散射的脉宽稳定性[J]. 中国激光, 2008, 35(2):163-167. (Lin Dianyang, Jiang Xiaocun, Wang Shujie, et al. Pulse duration stability of stimulated Brillouin scattering in SF6 pumped by a broadband KrF laser[J]. Chinese Journal of Lasers, 2008, 35(2): 163-167 doi: 10.3321/j.issn:0258-7025.2008.02.001 [102] 远航. 基于主动频率匹配SBS的百皮秒激光脉冲放大技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 43-44.Yuan Hang. Investigation on amplification of hundred picoseconds laser pulses via active frequency matching stimulated Brillouin scattering[D]. Harbin: Harbin Institute of Technology, 2018: 43-44 [103] 王雪阳. SBS百皮秒脉冲压缩特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 27-28.Wang Xueyang. Research on the compression properties for generating SBS pulse of hundreds picosecond[D]. Harbin: Harbin Institute of Technology, 2013: 27-28 [104] Kong Hongjin, Beak D H. Prepulse technique for preserving the pulse shape of the stimulated Brillouin scattering[C]//Proceedings of SPIE 6454, High Energy/Average Power Lasers and Intense Beam Applications. San Jose, California, United States: SPIE, 2007: 64540E. [105] 郭少锋, 陆启生, 程湘爱, 等. 光学透明材料中瞬态SBS过程的数值研究[J]. 物理学报, 2004, 53(1):99-104. (Guo Shaofeng, Lu Qisheng, Cheng Xiangai, et al. Numerical study for transient SBS process in transparent optical materials[J]. Acta Physica Sinica, 2004, 53(1): 99-104 doi: 10.3321/j.issn:1000-3290.2004.01.020 [106] Liu Zhaohong, Wang Yulei, Wang Yirui, et al. Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime[J]. Optics Express, 2018, 26(5): 5701-5710. doi: 10.1364/OE.26.005701 [107] 王超, 吕志伟, 林殿阳, 等. 利用受激布里渊散射压缩获得小于介质1/4超声振荡周期的激光脉冲[J]. 中国激光, 2006, 33(s):226-228. (Wang Chao, Lü Zhiwei, Lin Dianyang, et al. Laser pulse with duration shorter than 1/4 of hypersound oscillation period of medium achieved by stimulated Brillouin compressor[J]. Chinese Journal of Lasers, 2006, 33(s): 226-228 [108] 成思勋. 全氟胺系列介质的SBS百皮秒脉冲压缩特性研究[D]. 哈尔滨: 哈尔滨工业大学. 2014: 23-24.Cheng Sixun. Research on the series media of perfluoroamine for hundred picoseconds pulse compression by SBS[D]. Harbin: Harbin Institute of Technology, 2014: 23-24 [109] 李杏. 基于短寿命介质SBS短脉冲压缩的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 27-29.Li Xing. Investigation on SBS short pulse compression based on medium with short phonon lifetime[D]. Harbin: Harbin Institute of Technology, 2011: 27-29 [110] Brillouin L. Diffussion of light and X-rays by a homogeneous transparent bady[J]. Annales of Physique, 1922, 9(17): 88-122. doi: 10.1051/anphys/192209170088 [111] Chiao R Y, Townes C H, Stoicheff B P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves[J]. Physical Review Letters, 1964, 12(21): 592-595. doi: 10.1103/PhysRevLett.12.592 [112] Brewer R G, Rieckhoff K E. Stimulated Brillouin scattering in liquids[J]. Physical Review Letters, 1964, 13(11): 334-336. doi: 10.1103/PhysRevLett.13.334 [113] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 1972, 21(11): 539-541. doi: 10.1063/1.1654249 [114] Hon D T. Applications of wavefront reversal by stimulated Brillouin scattering[J]. Optical Engineering, 1982, 21: 212252. [115] Kubeček V, Hamal K, Procházka I, et al. Compression of the Nd: YAP laser pulse by two-stage stimulated backward scattering[J]. Optics Communications, 1989, 73(3): 251-256. doi: 10.1016/0030-4018(89)90094-1 [116] Velchev I, Neshev D, Hogervorst W, et al. Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering[J]. IEEE Journal of Quantum Electronics, 1999, 35(12): 1812-1816. doi: 10.1109/3.806589 [117] Kong Hongjin, Lee S K, Lee D W, et al. Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation[J]. Applied Physics Letters, 2005, 86: 051111. doi: 10.1063/1.1857088 [118] Yuan Hang, Wang Yulei, Lu Zhiwei, et al. Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse[J]. Optics Letters, 2018, 43(3): 511-514. doi: 10.1364/OL.43.000511 [119] 刘照虹, 李森森, 白振旭, 等. 受激布里渊散射Stokes脉冲展宽现象抑制研究[J]. 光电技术应用, 2019, 34(2):17-21. (Liu Zhaohong, Li Sensen, Bai Zhenxu, et al. Stokes duration broadening suppressing in the process of stimulated Brillouin scattering compression[J]. Electro-Optic Technology Application, 2019, 34(2): 17-21 doi: 10.3969/j.issn.1673-1255.2019.02.004 [120] Wang Hongli, Cha S, Kong Hongjin, et al. Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation[J]. Optics Express, 2019, 27(7): 9895-9905. doi: 10.1364/OE.27.009895 [121] Andreev N, Kulagin O P, Palashov O V, et al. SBS of repetitively pulsed radiation and possibility of increasing the pump average power[C]//Proceedings of SPIE 2633, Solid State Lasers for Application to Inertial Confinement Fusion. Monterey, CA, United States: SPIE, 1995. [122] Buzyalis R R, Dementjev A S, Kosenko E K. Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG: Nd laser[J]. Soviet Journal of Quantum Electronics, 1985, 15(10): 1335-1337. doi: 10.1070/QE1985v015n10ABEH007759 [123] Gowers C W, Brown B W, Fajemirokun H, et al. Recent developments in LIDAR Thomson scattering measurements on JET (invited)[J]. Review of Scientific Instruments, 1995, 66(1): 471-475. doi: 10.1063/1.1146321 [124] Kim H J, Lee E G, Kim C Y. A high-multi target resolution focal plane array-based laser detection and ranging sensor[J]. Sensors, 2019, 19: 1210. doi: 10.3390/s19051210 [125] 向祥军, 李剑彬, 周丹丹, 等. 高峰值功率光纤脉冲激光系统[J]. 中国激光, 2018, 45:0601002. (Xiang Xiangjun, Li Jianbin, Zhou Dandan, et al. High-peak-power fiber pulse laser system[J]. Chinese Journal of Lasers, 2018, 45: 0601002 doi: 10.3788/CJL201845.0601002 [126] Yu Tianbiao, Bao Yiting. Research on manufacturing technology of thin-walled parts of Fe105 metal based on laser cladding[J]. Journal of Physics: Conference Series, 2019, 1187: 032043. doi: 10.1088/1742-6596/1187/3/032043 [127] Kang Zhijun, Fan Zhongwei, Huang Yutao, et al. High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM[J]. Optics Express, 2018, 26(6): 6560-6571. doi: 10.1364/OE.26.006560 [128] Bourne O L, Alcock A J. Simplified technique for subnanosecond pulse generation and injection mode-locking of a XeCl laser[J]. Applied Physics B, 1985, 36(4): 181-185. doi: 10.1007/BF00704572 [129] Zhang Fangpei, Lou Qihong, Dong Jingxing, et al. Generation of 1.5~12 ns width-tunable 532 nm pulses by adopting laser-induced plasma shutter technique[J]. Optik, 2009, 120(5): 237-241. doi: 10.1016/j.ijleo.2007.09.001 [130] Hasi W L J, Lu Z W, Lu H H, et al. Investigation on pulse compression based on stimulated Brillouin scattering and optical breakdown[J]. Applied Physics B, 2010, 98(2/3): 397-400. [131] Long Xin, Zou Weiwen, Chen Jianping. All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering[J]. Optics Express, 2016, 24(5): 5162-5171. doi: 10.1364/OE.24.005162 [132] Long Xin, Zou Weiwen, Ji Yi, et al. Accurate measurement of time delay of broadband microwave signal via high-repetition-rate pulse train probing SBS based all-optical pulse compression[J]. Optics Express, 2017, 25(26): 33330-33337. doi: 10.1364/OE.25.033330 [133] Ji Yi, Zou Weiwen, Long Xin, et al. Signal-to-noise ratio enhancement of stimulated Brillouin scattering based pulse compression of an ultrabroad microwave signal by use of a dispersion compensation fiber[J]. Optics Letters, 2017, 42(15): 2980-2983. doi: 10.1364/OL.42.002980 [134] Chen Xudong, Chang Chengcheng, Pu Jixiong. Stimulated Brillouin scattering phase conjugation of light beams carrying orbit angular momentum[J]. Chinese Optics Letters, 2017, 15: 030006. doi: 10.3788/COL201715.030006 [135] Gao Wei, Mu Chunyuan, Li Hongwei, et al. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction[J]. Applied Physics Letters, 2015, 107: 041119. doi: 10.1063/1.4927699 [136] Zhu Zhihan, Gao Wei, Mu Chunyuan, et al. Reversible orbital angular momentum photon–phonon conversion[J]. Optica, 2016, 3(2): 212-217. doi: 10.1364/OPTICA.3.000212