Development and application of all-solid-state bi-polar nanosecond pulse generators
-
摘要: 研制了一种双极性交替的纳秒高压脉冲电源,进行了双极性纳秒脉冲放电产生等离子体研究。该电源先通过固态开关IGBT将直流电压截断成电压脉冲,通过可饱和脉冲变压器拓扑,实现升压并缩短脉冲上升沿。该电源可在一个周期内输出极性相反的2个脉冲,且时序可以灵活控制。通过优化调整器件参数,研制了两种不同输出性能参数的双极性纳秒脉冲电源:①峰值电压10 kV、爆发模式脉冲重复频率500 kHz(正负脉冲间隔2 μs)、连续重复频率1 kHz;②峰值电压25 kV、爆发重频200 kHz、连续重频600 Hz。测试电源的运行性能,发现电源存在温度升高的情况,但长时间(>0.5 h)运行温度趋于稳定。10 kV电源连续运行在1 kHz时最高温度点50.5 ℃;25 kV电源连续运行在600 Hz时最高温度点60 ℃。利用该电源驱动线板电极阵列和表面介质阻挡放电结构,证实了该电源可以用于常压空气条件下产生大面积等离子体。Abstract: A nanosecond pulse generator with alternating output voltage polarity is developed, and the study of plasma generated by bipolar nanosecond pulse discharge is carried out. The generator first cuts DC voltage into a voltage pulse through solid-state switches IGBT, and uses a saturable pulse transformer to boost the voltage and shorten the pulse rising edge. The generator can output two pulses with opposite polarities in one cycle, and the timing can be flexibly controlled. By choosing devices with proper parameters, two bipolar nanosecond pulse generators with optimized output parameters are developed: ① The peak voltage is 10 kV, and the pulse repetition frequency in burst mode is 500 kHz (interval between positive and negative pulses is 2 μs), with continuous repetition frequency of 1 kHz; ② The peak voltage is 25 kV, with 200 kHz burst frequency, and the continuous frequency is 600 Hz. The operating performance of the generators is tested, and it is found that the temperature of the generators tends to increase to a stable point during long-duration(more than half an hour) operation. When the 10 kV generator continuously works at 1 kHz, its highest temperature is 50.5 ℃. For the 25 kV generator continuously working at 600 Hz, the highest temperature point is 60 ℃. The result of using the generators to drive the wire-to-plate electrode and the surface dielectric barrier discharge proves that the generators can be used to generate large-area plasma in atmospheric air.
-
表 1 器件型号与关键参数
Table 1. Tow device models and their key parameters
parameter value 10 kV pulse generator 25 kV pulse generator magnetic core size/mm 25/40/15 35/60/20 saturation magnetic induction/T 0.54 1.2 square ratio 0.94 0.85 N1∶N2 2∶25 2∶42 inductance of primary winding/μH 63/56.9/50.55 67/42.2/35.13 inductance of secondary winding/mH 24.8/9.131/5.421 69.94/28.98/16.94 leakage inductance of primary winding/μH 1/0.5/0.49 25/1.3/1.023 leakage inductance of secondary winding/mH 0.851/0.163/0.516 1.65/0.447/0.314 IGBT IRGPS60B120KD 2MBI450VH-120-50 Note: inductance values of each parameter are tested under 0.1, 1, 10 kHz. 表 2 与已有电源参数对比
Table 2. Parameter comparison with previous work
technical route peak-to-peak voltage/kV pulse repetition frequency/kHz rise time/ns pulse width/ns reference Marx generator based on solid-state switches 10 0.1 328 3100 [9] cascaded superposition 20 10 200 5000 [10] drift step recovery diode 2.2 1000 1 ~3 [12] linear transformer driver 5 3300 30 ~100 [13] magnetic compression 20 500 50 104 this work 50 200 90 254 表 3 放电参数对比(SDBD)
Table 3. Comparison of discharge parameters (Surface Dielectric Barrier Discharge, SDBD)
表 4 放电参数对比
Table 4. Comparison of discharge parameters
-
[1] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705 [2] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9 [3] 吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16):3494-3503. (Wu Shilin, Yang Qing, Shao Tao. Effect of surface-modified electrode by low temperature plasma on charge injection of liquid dielectric[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503 [4] Yu Weixin, Kong Fei, Dong Pan, et al. Depositing chromium oxide film on alumina ceramics enhances the surface flashover performance in vacuum via PECVD[J]. Surface and Coatings Technology, 2021, 405: 126509. doi: 10.1016/j.surfcoat.2020.126509 [5] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358 [6] Zhang Cheng, Huang Bangdou, Luo Zhenbing, et al. Atmospheric-pressure pulsed plasma actuators for flow control: shock wave and vortex characteristics[J]. Plasma Sources Science and Technology, 2019, 28(6): 064001. doi: 10.1088/1361-6595/ab094c [7] 于维鑫, 朱文超, 程晓, 等. 纳秒脉冲等离子体合成射流激励器的流场特性分析[J]. 气体物理, 2021, 6(2):38-45. (Yu Weixin, Zhu Wenchao, Cheng Xiao, et al. Analysis of flow field of nanosecond pulsed plasma synthetic jet[J]. Physics of Gases, 2021, 6(2): 38-45 [8] 康少芬, 张帅, 陈晓晓, 等. 纳秒脉冲介质阻挡放电等离子体氮还原合成氨的研究[J]. 高电压技术, 2021, 47(1):368-375. (Kang Shaofen, Zhang Shuai, Chen Xiaoxiao, et al. Study on reduction of nitrogen to ammonia by nanosecond pulse dielectric barrier discharge plasma[J]. High Voltage Engineering, 2021, 47(1): 368-375 [9] 饶俊峰, 李恩成, 王永刚, 等. 自触发驱动的全固态Marx发生器[J]. 强激光与粒子束, 2021, 33:025001. (Rao Junfeng, Li Encheng, Wang Yonggang, at al. Self-triggering all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 025001 [10] 韩静, 高迎慧, 孙鹞鸿, 等. 级联型高压重频微秒脉冲电源的研制[J]. 高电压技术, 2019, 45(11):3762-3768. (Han Jing, Gao Yinghui, Sun Yaohong, et al. Design of cascade high-voltage repeated-frequency microsecond-pulse power supply[J]. High Voltage Engineering, 2019, 45(11): 3762-3768 [11] 赖雨辰, 谢彦召, 王海洋, 等. 基于DSRD的高重频固态脉冲源的研制[J]. 强激光与粒子束, 2020, 32:105002. (Lai Yuchen, Xie Yanzhao, Wang Haiyang, et al. Development of the high repetitive frequency solid-state pulse generator based on DSRD[J]. High Power Laser and Particle Beams, 2020, 32: 105002 [12] Merensky L M, Kardo-Sysoev A F, Shmilovitz D, et al. Efficiency study of a 2.2 kV, 1 ns, 1 MHz pulsed power generator based on a drift-step-recovery diode[J]. IEEE Transactions on Plasma Science, 2013, 41(11): 3138-3142. doi: 10.1109/TPS.2013.2284601 [13] Jiang Weihua, Sugiyama H, Tokuchi A. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627 [14] Huiskamp T. Nanosecond pulsed streamer discharges Part I: Generation, source-plasma interaction and energy-efficiency optimization[J]. Plasma Sources Science and Technology, 2020, 29: 023002. doi: 10.1088/1361-6595/ab53c5 [15] Zhao Zheng, Li Jiangtao. Repetitively pulsed gas discharges: memory effect and discharge mode transition[J]. High Voltage, 2020, 5(5): 569-582. doi: 10.1049/hve.2019.0383 [16] Huang Bangdou, Zhang Cheng, Adamovich I, et al. Surface ionization wave propagation in the nanosecond pulsed surface dielectric barrier discharge: the influence of dielectric material and pulse repetition rate[J]. Plasma Sources Science and Technology, 2020, 29: 044001. doi: 10.1088/1361-6595/ab7854 [17] 李波, 李博婷, 叶超, 等. 双极性脉冲磁控溅射电源设计[J]. 强激光与粒子束, 2018, 30:045004. (Li Bo, Li Boting, Ye Chao, et al. Design of bipolar pulsed magnetron sputtering power supply[J]. High Power Laser and Particle Beams, 2018, 30: 045004 doi: 10.11884/HPLPB201830.170393 [18] Li Zhang, Yang Dezheng, Wang Wenchun, et al. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap[J]. Journal of Applied Physics, 2014, 116: 113301. doi: 10.1063/1.4895982 [19] 石小燕, 任先文, 刘平, 等. 基于MOSFET的高重复频率高压脉冲源设计[J]. 强激光与粒子束, 2019, 31:040022. (Shi Xiaoyan, Ren Xianwen, Liu Ping, et al. Design of high repetition rate and high voltage pulse generator based on metal oxide semiconductor field-effect transistor[J]. High Power Laser and Particle Beams, 2019, 31: 040022 doi: 10.11884/HPLPB201931.180321 [20] Yin Tianxiang, Xu Chen, Lin Lei, et al. A SiC MOSFET and Si IGBT hybrid modular multilevel converter with specialized modulation scheme[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 12623-12628. doi: 10.1109/TPEL.2020.2993366 [21] Orlacchio R, Carr L, Palego C, et al. High-voltage 10 ns delayed paired or bipolar pulses for in vitro bioelectric experiments[J]. Bioelectrochemistry, 2021, 137: 107648. doi: 10.1016/j.bioelechem.2020.107648 [22] Wang Gang, Su Jiancang, Ding Zhenjie, et al. A semiconductor opening switch based generator with pulse repetitive frequency of 4 MHz[J]. Review of Scientific Instruments, 2013, 84: 125102. doi: 10.1063/1.4833683 [23] Pescini E, De Giorgi M G, Suma A, et al. Separation control by a microfabricated SDBD plasma actuator for small engine turbine applications: influence of the excitation waveform[J]. Aerospace Science and Technology, 2018, 76: 442-454. doi: 10.1016/j.ast.2018.01.019 [24] 魏德宸, 张国鑫, 陈永彬. 气隙构型对高频交流SDBD防除冰激励器的温升影响[J]. 航空学报, 2021, 42:124195. (Wei Dechen, Zhang Guoxin, Chen Yongbin. Effects of air-gap on the temperature rise characteristics of AC-SDBD actuator anti-icing and deicing actuator under high frequency[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42: 124195 [25] Peng Bangfa, Shang Kefeng, Liu Zhengyan, et al. Evolution of three-electrode pulsed surface dielectric barrier discharge: primary streamer, transitional streamer and secondary reverse streamer[J]. Plasma Sources Science and Technology, 2020, 29: 035018. doi: 10.1088/1361-6595/ab6f23 [26] Yao Xiaomei, Peng Bangfa, Jiang Nan, et al. Investigation of toluene removal by DC discharge with MgO/NiO/Ni cathode under different operating parameters[J]. Journal of Physics D: Applied Physics, 2020, 53: 085201. doi: 10.1088/1361-6463/ab5732 [27] Ait Said H, Nouri H, Zebboudj Y. Effect of air flow on corona discharge in wire-to-plate electrostatic precipitator[J]. Journal of Electrostatics, 2015, 73: 19-25. doi: 10.1016/j.elstat.2014.10.004 [28] Li Ziyi, Liu Yingshu, Xing Yi, et al. Novel wire-on-plate electrostatic precipitator (WOP-EP) for controlling fine particle and nanoparticle pollution[J]. Environmental Science & Technology, 2015, 49(14): 8683-8690. [29] Zhang Cheng, Qiu Jintao, Kong Fei, et al. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air[J]. Plasma Science and Technology, 2018, 20: 014011. doi: 10.1088/2058-6272/aa8c6e [30] Zhang Cheng, Shao Tao, Yan Ping, et al. Nanosecond-pulse gliding discharges between point-to-point electrodes in open air[J]. Plasma Sources Science and Technology, 2014, 23: 035004. doi: 10.1088/0963-0252/23/3/035004 [31] Shao Tao, Tarasenko V F, Yang Wenjin, et al. Spots on electrodes and images of a gap during pulsed discharges in an inhomogeneous electric field at elevated pressures of air, nitrogen and argon[J]. Plasma Sources Science and Technology, 2014, 23: 054018. doi: 10.1088/0963-0252/23/5/054018