[1] |
梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
|
[2] |
戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
|
[3] |
孔刚玉, 刘定新. 气体等离子体与水溶液的相互作用研究——意义、挑战与新进展[J]. 高电压技术, 2014, 40(10):2956-2965. (Kong Gangyu, Liu Dingxin. Researches on the interaction between gas plasmas and aqueous solutions: significance, challenges and new progresses[J]. High Voltage Engineering, 2014, 40(10): 2956-2965
|
[4] |
侯世英, 曾鹏, 刘坤, 等. 单介质与双介质结构介质阻挡放电水处理性能的比较[J]. 高电压技术, 2012, 38(7):1562-1567. (Hou Shiying, Zeng Peng, Liu Kun, et al. Comparison of water treatment performance employ dielectric barrier discharge in single and double dielectric structure[J]. High Voltage Engineering, 2012, 38(7): 1562-1567
|
[5] |
Zhou Renwu, Zhou Rusen, Wang Peiyu, et al. Plasma-activated water: generation, origin of reactive species and biological applications[J]. Journal of Physics D: Applied Physics, 2020, 53: 303001. doi: 10.1088/1361-6463/ab81cf
|
[6] |
Bradu C, Kutasi K, Magureanu M, et al. Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture[J]. Journal of Physics D: Applied Physics, 2020, 53: 223001. doi: 10.1088/1361-6463/ab795a
|
[7] |
Hoeben W F L M, van Ooij P P, Schram D C, et al. On the possibilities of straightforward characterization of plasma activated water[J]. Plasma Chemistry and Plasma Processing, 2019, 39(3): 597-626. doi: 10.1007/s11090-019-09976-7
|
[8] |
Zhou Renwu, Zhou Rusen, Wang Peiyu, et al. Microplasma bubbles: reactive vehicles for biofilm dispersal[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20660-20669.
|
[9] |
Hefny M M, Pattyn C, Lukes P, et al. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions[J]. Journal of Physics D: Applied Physics, 2016, 49: 404002. doi: 10.1088/0022-3727/49/40/404002
|
[10] |
顾建伟, 章程, 王瑞雪, 等. 不同条件下大气压脉冲弥散放电特性[J]. 强激光与粒子束, 2016, 28:015023. (Gu Jianwei, Zhang Cheng, Wang Ruixue, et al. Characteristics of pulsed diffuse discharges under different conditions in atmospheric air[J]. High Power Laser and Particle Beams, 2016, 28: 015023 doi: 10.11884/HPLPB201628.015023
|
[11] |
姜慧, 章程, 邵涛, 等. 纳秒脉冲表面介质阻挡放电特性实验研究[J]. 强激光与粒子束, 2012, 24(3):592-596. (Jiang Hui, Zhang Cheng, Shao Tao, et al. Experimental study on characteristics of nanosecond-pulse surface dielectric barrier discharge[J]. High Power Laser and Particle Beams, 2012, 24(3): 592-596 doi: 10.3788/HPLPB20122403.0592
|
[12] |
Wang Sen, Yang Dezheng, Zhou Rusen, et al. Mode transition and plasma characteristics of nanosecond pulse gas-liquid discharge: effect of grounding configuration[J]. Plasma Processes and Polymer, 2020, 17: 1900146. doi: 10.1002/ppap.201900146
|
[13] |
王琪, 王萌, 王珏, 等. 纳秒脉冲下变压器油两相流注放电仿真研究[J]. 强激光与粒子束, 2020, 32:025011. (Wang Qi, Wang Meng, Wang Jue, et al. Two-phase streamer characteristics in transformer oil under nanosecond impulses voltages[J]. High Power Laser and Particle Beams, 2020, 32: 025011 doi: 10.11884/HPLPB202032.190370
|
[14] |
Brandt S, Schütz A, Klute F D, et al. Dielectric barrier discharges applied for optical spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 123: 6-32. doi: 10.1016/j.sab.2016.07.001
|
[15] |
Zhang Shuai, Wang Wenchun, Jiang Pengchao, et al. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge[J]. Journal of Applied Physics, 2013, 114: 163301. doi: 10.1063/1.4825053
|
[16] |
Shao Tao, Long Kaihua, Zhang Cheng, et al. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2008, 41: 215203. doi: 10.1088/0022-3727/41/21/215203
|
[17] |
Zhou Xiongfeng, Liang Jianping, Zhao Zilu, et al. Ultra-high synergetic intensity for humic acid removal by coupling bubble discharge with activated carbon[J]. Journal of Hazardous Materials, 2021, 403: 123626. doi: 10.1016/j.jhazmat.2020.123626
|
[18] |
Wandell R J, Wang Huihui, Bulusu R K M, et al. Formation of nitrogen oxides by nanosecond pulsed plasma discharges in gas–liquid reactors[J]. Plasma Chemistry and Plasma Processing, 2019, 39(3): 643-666. doi: 10.1007/s11090-019-09981-w
|
[19] |
Zhou Xiongfeng, Wang Wenchun, Yang Dezheng, et al. Controlling of reactive species in atmospheric Ar bubble discharge by adding N2/O2a[J]. Plasma Processes and Polymer, 2019, 16: 1800124. doi: 10.1002/ppap.201800124
|
[20] |
Bulusu R K M, Wandell R J, Gallan R O, et al. Nitric oxide scavenging of hydroxyl radicals in a nanosecond pulsed plasma discharge gas–liquid reactor[J]. Journal of Physics D: Applied Physics, 2019, 52: 504002. doi: 10.1088/1361-6463/ab431a
|