留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压空气针-水结构脉冲气-液放电特性研究

刘亚韪 周子凯 王森 方志

刘亚韪, 周子凯, 王森, 等. 大气压空气针-水结构脉冲气-液放电特性研究[J]. 强激光与粒子束, 2021, 33: 065008. doi: 10.11884/HPLPB202133.210020
引用本文: 刘亚韪, 周子凯, 王森, 等. 大气压空气针-水结构脉冲气-液放电特性研究[J]. 强激光与粒子束, 2021, 33: 065008. doi: 10.11884/HPLPB202133.210020
Liu Yawei, Zhou Zikai, Wang Sen, et al. Research on the characteristics of atmospheric pressure air pulse gas-liquid discharge using a needle-water electrode[J]. High Power Laser and Particle Beams, 2021, 33: 065008. doi: 10.11884/HPLPB202133.210020
Citation: Liu Yawei, Zhou Zikai, Wang Sen, et al. Research on the characteristics of atmospheric pressure air pulse gas-liquid discharge using a needle-water electrode[J]. High Power Laser and Particle Beams, 2021, 33: 065008. doi: 10.11884/HPLPB202133.210020

大气压空气针-水结构脉冲气-液放电特性研究

doi: 10.11884/HPLPB202133.210020
基金项目: 国家自然科学基金项目(51907088)
详细信息
    作者简介:

    刘亚韪(1996—),男,硕士研究生,主要从事气液放电等离子体诊断及应用研究

    通讯作者:

    王 森(1989—),男,博士,讲师,主要从事气液放电等离子体诊断及应用研究

  • 中图分类号: TM89, O531

Research on the characteristics of atmospheric pressure air pulse gas-liquid discharge using a needle-water electrode

  • 摘要: 利用纳秒脉冲电源激励大气压空气中针-水结构气液放电,研究了不同脉冲参数下的放电特性、等离子体特性和活化水中活性粒子浓度的变化规律。结果表明,在一个脉冲周期内放电分为3个阶段,其中发生在脉冲持续时间内和下降沿的两次放电较强,上升沿的放电较弱。当脉冲电压增大时,放电电流、平均功率、发光强度和发射光谱强度均逐渐增大;当频率增大时,放电电流几乎不变,但是功率显著增大,放电发光强度和发射光谱强度均增大。电压上升沿时间的增大则会减弱放电强度,相应的放电发光强度和发射光谱强度均减弱。而电压下降沿的增大则会增强放电,发光强度和发射光谱强度增大。当脉冲电压、频率和下降沿时间增大,H2O2${\rm{NO}}_2^ - $${\rm{NO}}_3^ - $浓度逐渐增大;而电压上升沿时间增大会导致3种活性粒子浓度逐渐降低。
  • 图  1  大气压空气脉冲气-液放电实验平台

    Figure  1.  Experimental setup of nanosecond pulse gas-liquid discharge in atmospheric air

    图  2  脉冲气液放电典型电压电流波形图

    Figure  2.  Typical waveforms of pulse voltage and discharge current in the pulse gas-liquid discharge

    图  3  放电电流和平均功率随脉冲参数的变化

    Figure  3.  Variation of discharge current and average power with pulse parameters

    图  4  不同脉冲参数下的放电图像

    图  5  脉冲气液放电典型发射光谱图(脉冲电压Up=10 kV,频率f=600 Hz,上升沿时间tr=50 ns,下降沿时间tf=50 ns)

    Figure  5.  Typical emission spectra of pulsed gas-liquid discharge (Up=10 kV, f=600 Hz, tr=50 ns, tf=50 ns)

    图  6  发射光谱强度随脉冲参数的变化

    Figure  6.  Variations of emission spectra intensity with pulse parameters

    图  7  溶液中活性粒子浓度随脉冲参数的变化

    Figure  7.  The concentration with pulse parameters

  • [1] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [2] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
    [3] 孔刚玉, 刘定新. 气体等离子体与水溶液的相互作用研究——意义、挑战与新进展[J]. 高电压技术, 2014, 40(10):2956-2965. (Kong Gangyu, Liu Dingxin. Researches on the interaction between gas plasmas and aqueous solutions: significance, challenges and new progresses[J]. High Voltage Engineering, 2014, 40(10): 2956-2965
    [4] 侯世英, 曾鹏, 刘坤, 等. 单介质与双介质结构介质阻挡放电水处理性能的比较[J]. 高电压技术, 2012, 38(7):1562-1567. (Hou Shiying, Zeng Peng, Liu Kun, et al. Comparison of water treatment performance employ dielectric barrier discharge in single and double dielectric structure[J]. High Voltage Engineering, 2012, 38(7): 1562-1567
    [5] Zhou Renwu, Zhou Rusen, Wang Peiyu, et al. Plasma-activated water: generation, origin of reactive species and biological applications[J]. Journal of Physics D: Applied Physics, 2020, 53: 303001. doi: 10.1088/1361-6463/ab81cf
    [6] Bradu C, Kutasi K, Magureanu M, et al. Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture[J]. Journal of Physics D: Applied Physics, 2020, 53: 223001. doi: 10.1088/1361-6463/ab795a
    [7] Hoeben W F L M, van Ooij P P, Schram D C, et al. On the possibilities of straightforward characterization of plasma activated water[J]. Plasma Chemistry and Plasma Processing, 2019, 39(3): 597-626. doi: 10.1007/s11090-019-09976-7
    [8] Zhou Renwu, Zhou Rusen, Wang Peiyu, et al. Microplasma bubbles: reactive vehicles for biofilm dispersal[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20660-20669.
    [9] Hefny M M, Pattyn C, Lukes P, et al. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions[J]. Journal of Physics D: Applied Physics, 2016, 49: 404002. doi: 10.1088/0022-3727/49/40/404002
    [10] 顾建伟, 章程, 王瑞雪, 等. 不同条件下大气压脉冲弥散放电特性[J]. 强激光与粒子束, 2016, 28:015023. (Gu Jianwei, Zhang Cheng, Wang Ruixue, et al. Characteristics of pulsed diffuse discharges under different conditions in atmospheric air[J]. High Power Laser and Particle Beams, 2016, 28: 015023 doi: 10.11884/HPLPB201628.015023
    [11] 姜慧, 章程, 邵涛, 等. 纳秒脉冲表面介质阻挡放电特性实验研究[J]. 强激光与粒子束, 2012, 24(3):592-596. (Jiang Hui, Zhang Cheng, Shao Tao, et al. Experimental study on characteristics of nanosecond-pulse surface dielectric barrier discharge[J]. High Power Laser and Particle Beams, 2012, 24(3): 592-596 doi: 10.3788/HPLPB20122403.0592
    [12] Wang Sen, Yang Dezheng, Zhou Rusen, et al. Mode transition and plasma characteristics of nanosecond pulse gas-liquid discharge: effect of grounding configuration[J]. Plasma Processes and Polymer, 2020, 17: 1900146. doi: 10.1002/ppap.201900146
    [13] 王琪, 王萌, 王珏, 等. 纳秒脉冲下变压器油两相流注放电仿真研究[J]. 强激光与粒子束, 2020, 32:025011. (Wang Qi, Wang Meng, Wang Jue, et al. Two-phase streamer characteristics in transformer oil under nanosecond impulses voltages[J]. High Power Laser and Particle Beams, 2020, 32: 025011 doi: 10.11884/HPLPB202032.190370
    [14] Brandt S, Schütz A, Klute F D, et al. Dielectric barrier discharges applied for optical spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 123: 6-32. doi: 10.1016/j.sab.2016.07.001
    [15] Zhang Shuai, Wang Wenchun, Jiang Pengchao, et al. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge[J]. Journal of Applied Physics, 2013, 114: 163301. doi: 10.1063/1.4825053
    [16] Shao Tao, Long Kaihua, Zhang Cheng, et al. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2008, 41: 215203. doi: 10.1088/0022-3727/41/21/215203
    [17] Zhou Xiongfeng, Liang Jianping, Zhao Zilu, et al. Ultra-high synergetic intensity for humic acid removal by coupling bubble discharge with activated carbon[J]. Journal of Hazardous Materials, 2021, 403: 123626. doi: 10.1016/j.jhazmat.2020.123626
    [18] Wandell R J, Wang Huihui, Bulusu R K M, et al. Formation of nitrogen oxides by nanosecond pulsed plasma discharges in gas–liquid reactors[J]. Plasma Chemistry and Plasma Processing, 2019, 39(3): 643-666. doi: 10.1007/s11090-019-09981-w
    [19] Zhou Xiongfeng, Wang Wenchun, Yang Dezheng, et al. Controlling of reactive species in atmospheric Ar bubble discharge by adding N2/O2a[J]. Plasma Processes and Polymer, 2019, 16: 1800124. doi: 10.1002/ppap.201800124
    [20] Bulusu R K M, Wandell R J, Gallan R O, et al. Nitric oxide scavenging of hydroxyl radicals in a nanosecond pulsed plasma discharge gas–liquid reactor[J]. Journal of Physics D: Applied Physics, 2019, 52: 504002. doi: 10.1088/1361-6463/ab431a
  • 加载中
图(7)
计量
  • 文章访问数:  1028
  • HTML全文浏览量:  375
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-05-29
  • 网络出版日期:  2021-06-10
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回