留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交流和纳秒脉冲Ar/H2O介质阻挡放电聚丙烯材料表面亲水改性对比研究

庄越 刘峰 储海靖 方志

庄越, 刘峰, 储海靖, 等. 交流和纳秒脉冲Ar/H2O介质阻挡放电聚丙烯材料表面亲水改性对比研究[J]. 强激光与粒子束, 2021, 33: 065017. doi: 10.11884/HPLPB202133.210021
引用本文: 庄越, 刘峰, 储海靖, 等. 交流和纳秒脉冲Ar/H2O介质阻挡放电聚丙烯材料表面亲水改性对比研究[J]. 强激光与粒子束, 2021, 33: 065017. doi: 10.11884/HPLPB202133.210021
Zhuang Yue, Liu Feng, Chu Haijing, et al. Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2021, 33: 065017. doi: 10.11884/HPLPB202133.210021
Citation: Zhuang Yue, Liu Feng, Chu Haijing, et al. Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2021, 33: 065017. doi: 10.11884/HPLPB202133.210021

交流和纳秒脉冲Ar/H2O介质阻挡放电聚丙烯材料表面亲水改性对比研究

doi: 10.11884/HPLPB202133.210021
基金项目: 国家自然科学基金项目(51777091)
详细信息
    作者简介:

    庄 越(1994—),男,硕士研究生,从事大气压低温等离子体介质阻挡放电研究

    通讯作者:

    刘 峰(1981—),男,博士,教授,从事等离子体诊断、低温等离子体应用研究

  • 中图分类号: TM213

Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage

  • 摘要: 为了提高等离子体对聚合物材料表面处理的应用效果,优化亲水处理的条件,研究了交流和纳秒脉冲氩气介质阻挡放电(DBD)中添加适量H2O,对聚丙烯(PP)亲水改性的处理效果。利用电学和光学诊断方法,系统地对比了交流DBD和纳秒脉冲DBD的放电特性,结果表明,纳秒电源驱动DBD具有更高的放电瞬时功率,更好的放电均匀性和更高的能量效率。通过测量不同水蒸气含量下DBD的OH发射光谱强度,确定了PP材料亲水性处理中H2O添加的最优含量。利用交流和纳秒脉冲电源驱动DBD分别对PP材料进行亲水改性的处理,测量了不同条件下改性处理后的表面水接触角,并利用原子力显微镜(AFM)和傅里叶红外光谱(FTIR)分别对处理前后PP材料的表面物理形貌和表面化学成分进行分析。结果发现,经DBD处理后PP材料的水接触角明显降低,表面粗糙度明显增大,表面的亲水性含氧基团,羟基(−OH)和羰基(C=O)的数量大幅增加。相比交流电源,纳秒脉冲DBD处理的改性效果更好,其处理后的材料表面水接触角,比交流DBD处理的低5°左右,表面粗糙度也有所提升。而水蒸气的加入可使PP材料的表面水接触角进一步减小4°左右,表面粗糙度明显提升。研究结果为优化DBD聚合物材料表面改性实验条件及处理的效果提供了重要的参考依据。
  • 图  1  DBD表面改性实验装置

    Figure  1.  Experimental device for DBD surface modification

    图  2  交流DBD的电压、电流、瞬时功率的波形

    Figure  2.  Voltage, current and instantaneous power of DBD excited by AC power supply

    图  3  纳秒脉冲DBD电压、电流、瞬时功率的波形

    Figure  3.  Voltage, current and instantaneous power of DBD excited by nanosecond pulse power supply

    图  4  不同电源的平均功率、能量效率随水蒸气含量变化曲线

    Figure  4.  Variation curve of average power and energy efficiency of DBD excited by different power supplies with water vapor content

    图  5  两种电源激励DBD在不同水蒸气含量下的发光图像

    Figure  5.  Lighting emission pictures of DBD excited by two power supplies under different water vapor content

    图  6  不同电源激励DBD的发射光谱

    Figure  6.  Emission spectra of DBD excited by different power supplies

    图  7  不同电源OH谱线强度随水蒸气含量的变化

    Figure  7.  Variation of the intensity of OH spectra with water vapor content for different power supplies

    图  8  不同处理时间条件下的PP材料表面水接触角

    Figure  8.  Water contact angle of PP material under different treatment time

    图  9  AFM测量的聚丙烯表面形貌图(3D和2D)

    Figure  9.  Surface morphology of polypropylene measured by AFM (3D and 2D)

    图  10  未处理的PP材料FTIR图

    Figure  10.  FTIR spectra of untreated polypropylene material

    图  11  不同条件下PP材料的FTIR图

    Figure  11.  FTIR spectra of polypropylene material under different conditions

  • [1] Zille A, Oliveira F R, Souto A P. Plasma treatment in textile industry[J]. Plasma Processes and Polymers, 2015, 12(2): 98-131. doi: 10.1002/ppap.201400052
    [2] Himma N F, Anisah S, Prasetya N, et al. Advances in preparation, modification, and application of polypropylene membrane[J]. Journal of Polymer Engineering, 2016, 36(4): 329-362. doi: 10.1515/polyeng-2015-0112
    [3] 叶润峰, 裴家耀, 郑明胜, 等. 高介电聚丙烯基纳米复合薄膜介电及储能性能抗老化特性[J]. 电工技术学报, 2020, 35(16):3529-3538. (Ye Runfeng, Pei Jiayao, Zheng Mingsheng, et al. Anti-aging characteristics of dielectric and energy storage of high dielectric polypropylene based nanocomposite films[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3529-3538
    [4] 李盛涛, 谢东日, 闵道敏. 聚丙烯/Al2O3纳米复合介质直流击穿特性与电荷输运仿真研究[J]. 中国电机工程学报, 2019, 39(20):6122-6130. (Li Shengtao, Xie Dongri, Min Daomin. Numerical simulation on space charge transport and DC breakdown properties of polypropylene/Al2O3 nanocomposites[J]. Proceedings of the CSEE, 2019, 39(20): 6122-6130
    [5] 迟晓红, 程璐, 刘文凤, 等. 聚丙烯基复合介质的结晶结构调控与性能提升[J]. 高电压技术, 2019, 45(7):2249-2256. (Chi Xiaohong, Cheng Lu, Liu Wenfeng, et al. Crystalline modification and property improvement of polypropylene-based composites[J]. High Voltage Engineering, 2019, 45(7): 2249-2256
    [6] 王婷婷, 章程, 张福增, 等. 氧含量对大气压等离子体薄膜沉积提高环氧树脂沿面耐压的影响[J]. 高电压技术, 2020, 46(10):3708-3714. (Wang Tingting, Zhang Cheng, Zhang Fuzeng, et al. Effect of oxygen concentration on improvement of surface pressure resistance of epoxy resin by atmospheric pressure plasma deposition[J]. High Voltage Engineering, 2020, 46(10): 3708-3714
    [7] 胡多, 任成燕, 章程, 等. 等离子体射流处理对聚全氟乙丙烯薄膜沿面绝缘特性的影响研究[J]. 中国电机工程学报, 2019, 39(15):4633-4640. (Hu Duo, Ren Chengyan, Zhang Cheng, et al. Effect of deposited film on the surface insulation characteristics of FEP material by atmospheric pressure plasma jet[J]. Proceedings of the CSEE, 2019, 39(15): 4633-4640
    [8] Wardani A K, Ariono D, Subagjo, et al. Hydrophilic modification of polypropylene ultrafiltration membrane by air-assisted polydopamine coating[J]. Polymers for Advanced Technologies, 2019, 30(4): 1148-1155. doi: 10.1002/pat.4549
    [9] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [10] 张迅, 曾华荣, 田承越, 等. 大气压等离子体制备超疏水表面及其防冰抑霜研究[J]. 电工技术学报, 2019, 34(24):5289-5296. (Zhang Xun, Zeng Huarong, Tian Chengyue, et al. Super-hydrophobic surface prepared by atmospheric-pressure plasma and its anti-icing, anti-frosting performance[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5289-5296
    [11] 储海靖, 刘峰, 庄越, 等. 水蒸气添加对纳秒脉冲激励氩气DBD放电特性的影响[J]. 高电压技术, 2021, 47(3):885-893. (Chu Haijing, Liu Feng, Zhuang Yue, et al. Influence of H2O addition on discharge characteristics of nanosecond pulsed Ar dielectric barrier discharge[J]. High Voltage Engineering, 2021, 47(3): 885-893
    [12] 张兴涛, 吴广宁, 杨雁, 等. 介质阻挡放电等离子体处理对聚酰亚胺表面放电的影响[J]. 高电压技术, 2018, 44(9):3097-3104. (Zhang Xingtao, Wu Guangning, Yang Yan, et al. Influence of dielectric barrier discharge plasma treatment on the surface discharge of polyimide film[J]. High Voltage Engineering, 2018, 44(9): 3097-3104
    [13] Van Deynse A, De Geyter N, Leys C, et al. Influence of water vapor addition on the surface modification of polyethylene in an argon dielectric barrier discharge[J]. Plasma Processes and Polymers, 2014, 11(2): 117-125. doi: 10.1002/ppap.201300088
    [14] Collette S, Dufour T, Reniers F. Reactivity of water vapor in an atmospheric argon flowing post-discharge plasma torch[J]. Plasma Sources Science and Technology, 2016, 25: 025014. doi: 10.1088/0963-0252/25/2/025014
    [15] Liu K, Lei J, Zheng Z, et al. The hydrophilicity improvement of polytetrafluoroethylene by Ar plasma jet: the relationship of hydrophilicity, ambient humidity and plasma parameters[J]. Applied Surface Science, 2018, 458: 183-190. doi: 10.1016/j.apsusc.2018.07.061
    [16] Kehrer M, Duchoslav J, Hinterreiter A, et al. Surface functionalization of polypropylene using a cold atmospheric pressure plasma jet with gas water mixtures[J]. Surface and Coatings Technology, 2020, 384: 125170. doi: 10.1016/j.surfcoat.2019.125170
    [17] 饶俊峰, 李成建, 李孜, 等. 全固态高重频高压脉冲电源[J]. 强激光与粒子束, 2019, 31:035001. (Rao Junfeng, Li Chengjian, Li Zi, et al. All solid state high-frequency and high voltage pulsed power supply[J]. High Power Laser and Particle Beams, 2019, 31: 035001 doi: 10.11884/HPLPB201931.190005
    [18] 李家强, 黄懿赟, 潘圣民, 等. 多级磁阱装置脉冲电源系统研制[J]. 强激光与粒子束, 2019, 31:065002. (Li Jiaqiang, Huang Yiyun, Pan Shengmin, et al. Development of pulse power supply system for multi-stage magnetic trap[J]. High Power Laser and Particle Beams, 2019, 31: 065002 doi: 10.11884/HPLPB201931.180270
    [19] 章程, 邵涛, 于洋, 等. 重复频率纳秒脉冲介质阻挡放电对聚对苯二甲酸乙二酯表面改性[J]. 强激光与粒子束, 2010, 22(3):539-544. (Zhang Cheng, Shao Tao, Yu Yang, et al. Surface modification of polyethylene terephthalate films using dielectric barrier discharge driven by repetitive nanosecond pulses[J]. High Power Laser and Particle Beams, 2010, 22(3): 539-544 doi: 10.3788/HPLPB20102203.0539
    [20] 章程, 许家雨, 邵涛, 等. 纳秒脉冲放电对聚对苯二甲酸乙二酯憎水改性[J]. 强激光与粒子束, 2014, 26:045020. (Zhang Cheng, Xu Jiayu, Shao Tao, et al. Hydrophobic modification of polyethylene terephthalate using nanosecond-pulse dielectric barrier discharge[J]. High Power Laser and Particle Beams, 2014, 26: 045020 doi: 10.11884/HPLPB201426.045020
    [21] Shao Tao, Zhang Cheng, Long Kaihua, et al. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air[J]. Applied Surface Science, 2010, 256(12): 3888-3894. doi: 10.1016/j.apsusc.2010.01.045
    [22] Liu Yunfei, Su Chunqiang, Ren Xiang, et al. Experimental study on surface modification of PET films under bipolar nanosecond-pulse dielectric barrier discharge in atmospheric air[J]. Applied surface science, 2014, 313: 53-59. doi: 10.1016/j.apsusc.2014.05.129
    [23] Yang Dezheng, Wang Wenchun, Zhang Shuai, et al. Atmospheric air homogenous DBD plasma excited by bipolar nanosecond pulse used for improving the hydrophilic property of polypropylene[J]. EPL (Europhysics Letters), 2013, 102: 65001. doi: 10.1209/0295-5075/102/65001
    [24] Yuan Hao, Wang Wenchun, Yang Dezheng, et al. Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19: 125401. doi: 10.1088/2058-6272/aa8766
    [25] Yuan Hao, Wang Wenchun, Yang Dezheng, et al. Hydrophilicity modification of aramid fiber using a linear shape plasma excited by nanosecond pulse[J]. Surface and Coatings Technology, 2018, 344: 614-620. doi: 10.1016/j.surfcoat.2018.03.057
    [26] 苗传润, 刘峰, 王乾, 等. 电极长度对纳秒脉冲同轴介质阻挡放电特性的影响[J]. 高电压技术, 2019, 45(6):1945-1954. (Miao Chuanrun, Liu Feng, Wang Qian, et al. Influence of electrode length on characteristics of coaxial dielectric barrier discharge driven by nanosecond pulsed power supply[J]. High Voltage Engineering, 2019, 45(6): 1945-1954
    [27] Dilecce G, De Benedictis S. Laser diagnostics of high-pressure discharges: laser induced fluorescence detection of OH in He/Ar–H2O dielectric barrier discharges[J]. Plasma Physics and Controlled Fusion, 2011, 53: 124006. doi: 10.1088/0741-3335/53/12/124006
    [28] Mansuroglu D, Uzun-Kaymak I U. Argon and nitrogen plasma modified polypropylene: surface characterization along with the optical emission results[J]. Surface and Coatings Technology, 2019, 358: 551-559. doi: 10.1016/j.surfcoat.2018.11.086
  • 加载中
图(11)
计量
  • 文章访问数:  1027
  • HTML全文浏览量:  337
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-05-29
  • 网络出版日期:  2021-06-11
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回