Development of digital BPM front-end conditioning circuit for BEPCII linac
-
摘要: 针对北京正负电子对撞机改造工程(BEPC II)直线加速器束流位置测量电子学系统故障率上升这一现状,结合BEPC II直线加速器束流参数以及BPM电子学ADC芯片带通采样的需求,设计了隔离度高、幅相一致性好的数字BPM射频前端电子学模块。数字BPM电子学系统采用MicroTCA 4.0系统架构,以FPGA作为主控制器,基于EDA软件开发设计。重点介绍了射频前端电子学模块中射频功率放大器、数字可调衰减器、带通滤波器等设计和实验室及在线测试结果。BEPC II对撞模式下,使用正电子束流,完成电子学系统在线测试,x方向位置测量精度约为38.46 μm,y方向位置测量精度约为26.16 μm,其测量精度和系统稳定性优于商用模拟BPM电子学模块,能够满足BEPC II直线加速器束流位置测量需求。Abstract: Aiming to control the rising failure rate of electronics system for BEPC II linac’s beam position measurement, considering the physical design parameters of BEPC II and the requirements of band-pass sampling of BPM electronics ADC chip, a digital BPM RF front-end electronics with high isolation degree and good amplitude and phase consistency is designed. The digital BPM electronics system adopts MicroTCA 4.0 system architecture, takes FPGA as the main controller, and is designed based on EDA software. This paper mainly introduces RF power amplifier, digital adjustable attenuator and bandpass filter in RF front-end electronics module, as well as the laboratory and online test results. In the collision mode of BEPC II, positron beam was used to complete the electronic system online test, and the measurement accuracy of x-direction was about 38.46 μm, while that of y-direction was about 26.16 μm. The measurement accuracy and system stability of the proposed method are better than that of commercial analog BPM electronics module, and can meet the beam position measurement requirements of BEPC II linac.
-
Key words:
- BEPC II /
- linac /
- digital BPM /
- phase adjustable /
- RF circuit
-
随着国内核电装机量的扩容,乏燃料数量在不断上升,乏燃料的贮存将面临巨大压力[1-2]。应用燃耗信用制技术(Burnup Credit,BUC)能够有效提升乏燃料贮存密度,缓解乏燃料贮存压力[3]。燃耗计算是BUC的重要环节,也是乏燃料后处理的基础。在燃耗计算中,实际燃耗过程复杂,且由于燃耗库的精度、核反应本身的随机性、输入参数上存在的固有误差以及选用不同的燃耗计算模型等因素,均会使燃耗计算得到的核素成分与实际情况存在偏差[4]。核素成分作为BUC临界安全分析的输入参数,其偏差将直接影响到临界计算的正确性,降低燃耗计算中核素成分的偏差及其不确定度能够压缩BUC临界安全分析的安全裕量,对提高乏燃料运输、贮存及后处理的经济性和安全性有着重要意义。
在BUC中量化燃耗计算偏差对临界计算的影响时,首先需要将大量燃耗计算结果与乏燃料成分实验基准数据进行对比验证和统计[5]。目前世界经济合作与发展组织(Organization for Economic Co-operation and Development,OECD)核能机构(Nuclear Energy Agency,NEA)已经建立了SFCOMPO2.0乏燃料核素成分实验基准数据库用于燃耗计算结果验证,但是SFCOMPO2.0中并未对影响燃耗计算结果的输入参数以及燃耗模型等因素进行统一的规定[6]。早在20世纪90年代,国际上就开始利用乏燃料成分实验基准数据对燃耗计算的核素成分进行对比验证[7-8]。国内上海交通大学和中国原子能科学研究院使用过单栅元燃耗模型得到SFCOMPO2.0中的乏燃料组件与燃耗计算的核素成分偏差[9-10],南华大学和西安交通大学则使用单组件模型进行过乏燃料成分实验基准数据与燃耗计算核素成分的对比[11]。综上:国内外在做燃耗计算与乏燃料成分实验基准数据对比时,通常采用单栅元或单组件燃耗模型进行计算,但在模型构建时均未考虑过单个组件之外的中子通量密度变化,且关于不同燃耗计算模型对压水堆乏燃料组件核素成分的影响鲜有研究。
为提高燃耗计算精度,本文以SFCOMPO2.0中TMI-1压水堆的NJ07OG组件为例,提出一种考虑装载不同燃料富集度的多组件燃耗模型,并对不同燃耗模型进行计算、对比,分析不同燃耗计算模型对压水堆乏燃料组件核素成分的影响。
1. 计算模型
本文以SFCOMPO2.0乏燃料核素成分实验基准数据库中的TMI-001压水堆NJ07OG组件为例,对O1S1、O1S2、O1S3、O12S4、O12S5、O12S6共计6个测量样本点使用SCALE6.1/TRITON程序[12]开展燃耗计算,核数据库均选用SCALE基于ENDF/B-V制作的44群截面库,可分辨共振能区采用SCALE中的BONAMI模块进行处理[13],不可分辨共振能区采用SCALE中的NITAWL模块进行处理,即采用Nordheim方法进行计算[14]。
1.1 燃耗实验基准题介绍
TMI-001压水堆包括177个燃料组件,每个燃料组件中包含208根燃料棒、16根控制棒导向管以及1根仪表导管,按照15×15正方形布置,NJ07OG组件的燃料棒布置如图1所示,6个样本在O1和O2燃料棒中的轴向位置如图2所示,图1、图2分别描述了6个样本在组件中的径向和轴向分布。此外,SFCOMPO2.0给出了6个样本在燃耗计算过程中的工况参数变化如图3所示,其中图3(a)为功率密度变化图,图3(b)为燃料温度变化图,图3(c)为慢化剂密度变化图,图3(d)为硼浓度变化图。NJ07OG组件在整个循环过程中控制棒下插。经文献查证[15],O1S2样本和O12S5样本在测量前经历了1529天的冷却时间,其他样本均经历了1298天的冷却时间,因此在燃耗计算时需要对各样本的冷却时间进行对应的考虑。燃料几何信息如表1所示。
表 1 燃料组件几何参数表Table 1. Fuel assembly geometric parameters(mm) fuel pellet inner
diameterclad inner
diameterclad outer
diametercell pitch absorber rod
pellet diameterabsorber rod cladding
inner diameter9.40 9.58 10.92 14.43 8.64 9.14 absorber rod cladding
outer diameterguide tube
inner diameterguide tube
outer diameterinstrument tube
inner diameterinstrument tube
outer diameterassembly
pitch10.92 12.65 13.46 11.2 12.52 218.11 1.2 燃耗计算模型设计
在燃耗计算中,燃耗方程可以写成
dNi(t)dt=n∑mγimˉσfmNm(t)ϕ+n∑jˉσijNj(t)ϕ+n∑kfikλkNk(t)−ˉσaiNi(t)ϕ−λiNi(t) (1) 式中:
n∑mγimˉσfmNm(t)ϕ 为t时刻核素m裂变成核素i的产生速率;n∑jˉσijNj(t)ϕ 为t时刻核素j由中子反应生成核素i的产生速率;n∑kfikλkNk(t) 为t时刻核素k衰变成核素i的产生速率;ˉσaiNi(t)ϕ 为因吸收中子而减少的核素i的消失速率;λiNi(t) 为因衰变而减少的核素i的消失速率。SCALE程序中采用矩阵指数法求解点燃耗方程[16]。在矩阵指数法中,考虑每个核素对所考虑核素的影响,因此点燃耗方程可以写成矩阵的形式
{\boldsymbol{N}}' = {\boldsymbol{A}} {\boldsymbol{N}} (2) 式中:
{\boldsymbol{N}} 为核素浓度向量;A为转化矩阵。转化矩阵A中所涉及的中子通量会随着时间和空间的不同而改变。由于在乏燃料核素成分实验中选取的是单根燃料棒中的小段长进行核素成分测量,因此在燃耗计算时,被测样本点处的中子通量密度与周围的中子通量密度并不一致。对于单栅元燃耗计算模型,无法考虑除被测样本以外的其他燃料栅元中子通量密度变化;对于单组件模型,尽管能对整个组件内的中子通量进行考虑,但实际上反应堆中相邻组件之间的燃料富集度、燃耗各不相同,这将导致组件边缘区域的中子通量密度存在变化,单组件模型无法对此情况进行考虑。因此,本文根据NJ07OG组件及其周围组件的燃料富集度装载情况,选取NJ07OG组件和离被测样本最近的3个1/4组件进行组合,以考虑组件边缘区域的中子通量密度变化。NJ07OG组件及其周围的燃料组件环境[17]如图4所示,其中控制棒材料为Al2O3-B4C。
为对比不同燃耗计算模型对乏燃料核素成分的影响,本文设置了四种燃耗计算模型,分别命名为模型1、模型2、模型3、模型4。为反映四种模型的区别,以O1燃料棒上的O1S1样本为例构建燃耗计算模型,其中模型1为单栅元全反射计算模型,如图5(a)所示;模型2为单组件计算模型,如图5(b)所示;模型3为4个1/4组件组合而成的多组件模型,如图5(c)所示。模型4为考虑周围不同燃料富集度的多组件模型,选取被测样本所在的1/4组件和离被测样本最近的3个1/4组件进行组合,如图5(d)所示。模型4与模型3之间仅改变了被测样本周围组件的燃料富集度,如果模型3与模型2的结果一致,即证明模型4与模型2之间仅改变了被测样本周围组件的燃料富集度。
2. 计算结果
在乏燃料贮存水池中,通常采用APU-2等级的燃耗信用制[18],APU-2等级考虑了乏燃料中易裂变同位素的净减少、锕系核素的中子吸收和部分裂变产物的中子吸收,本文选取的核素如表2所示。
表 2 选取的核素列表Table 2. Nuclides chosenactinide nuclides fission products 234U, 235U, 236U, 238U 151Eu, 153Eu, 143Nd, 145Nd, 148Nd 238Pu, 239Pu, 240Pu, 241Pu, 242Pu 147Sm, 149Sm, 150Sm, 151Sm, 152Sm 237Np, 241Am, 243Am, 244Cm 155Gd 首先,在乏燃料核素成分的实验测量中,通常根据148Nd核素的浓度变化来判断燃料的燃耗深度[19],因此图6(a)对比了148Nd核素的不同燃耗模型计算值与实验值的相对偏差,并给出了实验值的测量不确定度。根据图6(a) 可以看出四种模型所计算的148Nd核素成分与实验值十分接近,且均在实验值的不确定性区间内,表明四种模型所计算的燃耗深度与实际燃耗深度基本相同。其次,在压水堆乏燃料贮存中,235U、238U和239Pu三种锕系核素对反应性影响最大[18],图6分别给出了235U、238U和239Pu三种核素的6个样本在四种燃耗模型中计算值与实验值的相对偏差,并给出了三种核素实验值的测量不确定度。根据图6(b)可以看出,四种燃耗模型的235U核素成分计算值与实验值的相对偏差均超出了实验值的测量不确定度,这是因为燃耗计算中燃料温度、慢化剂密度、燃耗步长等参数以及核数据库的不确定性所造成的;根据图6(c)可以看出,四种模型计算的238U核素成分相对偏差均在实验测量的不确定性区间内;根据图6(d)可以看出,模型1的239Pu核素成分相对偏差均超出了实验测量的不确定性区间,模型2和3中O1S1、O1S2以及O12S4样本的239Pu核素成分相对偏差超出了实验测量的不确定性区间,模型4仅O1S2样本的239Pu核素成分相对偏差超出了实验测量的不确定性区间。
在BUC中进行乏燃料核素成分偏差及偏差不确定度分析时,通常会引入核素修正因子进行偏差估计[4]。核素修正因子通过对多个乏燃料成分实验基准数据与燃耗计算值之比进行均值统计后得到。当核素修正因子越接近1时,核素的平均相对偏差越接近于0,此时BUC的核素成分偏差越小。
图7给出了各核素的平均相对偏差,从中可以看出以下几点:(1)模型2与模型3的计算结果非常吻合,这表明模型3与模型2能够进行等效替换,即证明模型4与模型2之间仅改变周围燃料的富集度;(2)模型1中235U、238U和239Pu等核素的平均相对偏差要大于其他模型;(3)模型4中235U、238U和239Pu等核素的平均相对偏差比其他模型更接近于0,且6个样本的相对偏差分布更为平均。
3. 结 论
本文使用不同的燃耗计算模型对TMI-001反应堆NJ07OG组件中的6个样本进行了计算、对比和分析。燃耗计算结果表明:除燃耗模型以外,还有其他因素影响了TMI-001反应堆NJ07OG组件中235U的核素成分偏差;考虑不同燃料富集度的多组件模型计算的235U、238U和239Pu三种主要锕系核素的平均相对偏差比单栅元模型分别降低了2.1%、0.2%和12.1%,比单组件模型分别降低了0.8%、0.1%和3.5%;相比其他模型,考虑不同燃料富集度的多组件模型得到的235U、238U和239Pu等核素平均相对偏差更接近于零且6个样本的相对偏差分布更为平均,推断出在BUC中使用不同燃料富集度的多组件模型进行燃耗计算可以降低核素成分的偏差。
-
表 1 衰减器性能参数
Table 1. Attenuator performance parameters
frequency/MHz voltage/V step/dB attenuation /dB IL/dB power/dBm 0.4~4000 3 0.5 31.5 1.6 28 表 2 BPM前端电子学模块隔离度测试
Table 2. Tested isolation data of BPM RF front-end electronics module
input(Ch A)/dBm output/dBm Ch A Ch B Ch C Ch D −30 4.85 −63.08 −71.01 −74.15 -
[1] 杨静, 曹建社, 杜垚垚, 等. BEPC II直线加速器数字延时触发器的设计与实现[J]. 强激光与粒子束, 2020, 32:074001. (Yang Jing, Cao Jianshe, Du Yaoyao, et al. Design and implementation of digital time-delay triggers for BEPC II linear accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 074001 [2] Zhou Hao, Liu Shubin, Zhao Lei, et al. Design of the fully digital beam position monitor for beam position measurement in SSRF[C]//Proc of 9th ICEMI. 2009: 1045-1051. [3] Zhao Lei, Liu Shubin, Tang Shaochun, et al. The design and initial testing of the beam phase and energy measurement system for DTL in the Proton Accelerator of CSNS[J]. IEEE Transactions on Nuclear Science, 2010, 57(2): 533-538. doi: 10.1109/TNS.2009.2033678 [4] Zhao Lei, Liu Shubin, Li Yusheng, et al. A general purpose test apparatus for high-speed, high resolution analog to digital converters based on IEEE standard[C]//Proc of 7th ICEMI. 2007: 179-184. [5] 岳黎冬. 中频信号采集及处理模块研制[D]. 哈尔滨: 哈尔滨工业大学, 2020.Yue Lidong. Development of IF signal acquisition and processing module[D]. Harbin: Harbin Institute of Technology, 2020. [6] Chen Senyu, Xu Hongjie, Zhao Zhentang. Shanghai Synchrotron Radiation Facility[C]//Proceedings of the Particle Accelerator Conference. 1999: 209-211. [7] 胡晓芳. ADS质子直线加速器束流位置和相位测量研究[D]. 合肥: 中国科学技术大学, 2013.Hu Xiaofang. Research on beam position and phase measurement of ADS Proton Linear Accelerator[D]. Hefei: University of Science and Technology of China, 2013 [8] 严晗. 全数字化束流位置测量系统工程样机的设计与制作[D]. 合肥: 中国科学技术大学, 2012.Yan Han. Design and manufacture of engineering prototype of fully digital beam position measurement system[D]. Hefei: University of Science and Technology of China, 2012 [9] 杜垚垚. HEPS中数字BPM前端射频调理电路的研制[D]. 北京: 中国科学院高能物理研究所, 2019.Du Yaoyao. Development of digital BPM front-end RF conditioning circuit in HEPS[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2019 [10] 周浩. 加速器束流诊断中数字BPM系统研究[D]. 合肥: 中国科学技术大学, 2009.Zhou Hao. Research on digital BPM system in accelerator beam diagnosis[D]. Hefei: University of Science and Technology of China, 2009 [11] 易星. 加速器束流信号调理及高速采集技术研究[D]. 上海: 中国科学院 上海应用物理研究所, 2012.Yi Xing. Research on accelerator beam signal conditioning and high-speed acquisition technology[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2012 [12] 李婷. 手持终端智能天线的设计[D]. 南京: 南京信息工程大学, 2019.Li Ting. Design of smart antenna for handheld terminal[D]. Nanjing: Nanjing University of Information Science & Technology, 2019 [13] 严晗, 赵雷, 刘树彬, 等. 数字BPM系统中模拟调理电路的研究[J]. 核电子学与探测技术, 2012, 32(9):1048-1052. (Yan Han, Zhao Lei, Liu Shubin, et al. Research on analog conditioning circuits in digital BPM systems[J]. Nuclear Electronics and Detection Technology, 2012, 32(9): 1048-1052 doi: 10.3969/j.issn.0258-0934.2012.09.013 [14] Du Yaoyao, Yang Jing, Wang Lin, et al. Design of RF front end of digital BPM for BEPCII[J]. Radiation Detection Technology and Methods, 2019, 3(3): 38. doi: 10.1007/s41605-019-0119-x [15] 随艳峰, 杜垚垚, 叶强, 等. 基于BEPCⅡ数字束流位置测量系统电子学系统的设计与实现[J]. 原子能科学技术, 2020, 54(1):172-178. (Sui Yanfeng, Du Yayao, Ye Qiang, et al. Based on BEPC Ⅱ digital beam position measurement system of electronics system design and implementation[J]. Atomic Energy Science and Technology, 2020, 54(1): 172-178 -