留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲金属离子等离子体推进器的等离子体生成和传播特性

田甲 刘文正 张文俊 姜希涛

田甲, 刘文正, 张文俊, 等. 脉冲金属离子等离子体推进器的等离子体生成和传播特性[J]. 强激光与粒子束, 2021, 33: 065020. doi: 10.11884/HPLPB202133.210051
引用本文: 田甲, 刘文正, 张文俊, 等. 脉冲金属离子等离子体推进器的等离子体生成和传播特性[J]. 强激光与粒子束, 2021, 33: 065020. doi: 10.11884/HPLPB202133.210051
Tian Jia, Liu Wenzheng, Zhang Wenjun, et al. Generation and propagation characteristics of plasma applied to pulsed metal ion plasma thruster[J]. High Power Laser and Particle Beams, 2021, 33: 065020. doi: 10.11884/HPLPB202133.210051
Citation: Tian Jia, Liu Wenzheng, Zhang Wenjun, et al. Generation and propagation characteristics of plasma applied to pulsed metal ion plasma thruster[J]. High Power Laser and Particle Beams, 2021, 33: 065020. doi: 10.11884/HPLPB202133.210051

脉冲金属离子等离子体推进器的等离子体生成和传播特性

doi: 10.11884/HPLPB202133.210051
基金项目: 国家自然科学基金项目(51577011);中央高校基本科研业务费专项资金项目(2018YJS162)
详细信息
    作者简介:

    田 甲(1992—),男,博士研究生,主要从事真空及气体放电等离子体的生成及应用研究

    通讯作者:

    刘文正(1964—),男,博士,教授,主要从事真空及气体放电等离子体的生成及应用研究

  • 中图分类号: V43

Generation and propagation characteristics of plasma applied to pulsed metal ion plasma thruster

  • 摘要: 综述了不同阳极结构脉冲金属离子等离子体推进器的放电特性、等离子体生成及传播特性。首先,讨论了一种带有绝缘套筒的裸阳极推进器结构。对比分析了无、有绝缘套筒的裸阳极推进器的等离子体生成及传播特性的区别。结果表明,绝缘套筒阻碍了阴极近旁带电粒子的径向运动,提高了沿绝缘套筒轴向喷射出去的等离子体的喷射性能。此外,发现采用裸阳极推进器结构放电过程中会有大量带电粒子进入阳极。其次,讨论了一种绝缘阳极推进器结构。结果表明,采用绝缘阳极结构进一步提高了沿绝缘套筒轴向喷射出去的等离子体密度。但是,与裸阳极推进器结构相比,等离子体的生成量减少。再次,讨论了一种微孔绝缘阳极推进器结构。结果表明,与裸阳极推进器结构相比,采用微孔绝缘阳极推进器结构生成的等离子体的密度峰值和传播速度峰值分别提高了12.6倍、3.9倍。最后,分别讨论了一种螺旋阳极推进器结构和一种多阳极推进器结构。结果表明,这两种推进器结构分别利用放电过程中形成的自磁场及电场有效提高了等离子体羽流的定向喷射性能。本研究可以为金属等离子体喷射性能的提高以及脉冲金属离子等离子体推进器的设计提供支持。
  • 图  1  脉冲真空放电实验系统示意图

    Figure  1.  Schematic of experimental setup of the pulsed vacuum discharge system

    图  2  电极结构示意图及其尺寸参数

    Figure  2.  Schematic of electrode structure and parameters

    图  3  放电现象侧视图

    Figure  3.  Side-view images of discharge phenomenon for an electrode structure

    图  4  绝缘套筒直径为4 mm时的电极结构示意图及其参数和电场分布图[24]

    Figure  4.  Schematic of electrode structure and its parameters and electric field distribution (insulating sleeve diameter is 4 mm)[24]

    图  5  绝缘阳极电极的典型放电电压及阴极电流波形

    Figure  5.  Typical waveforms of discharge voltage and cathode current of the insulated anode structure

    图  6  等离子体参数测量结果[24]

    Figure  6.  Measurement results of plasma parameters[24]

    图  7  绝缘套筒直径为4 mm时的放电现象侧视图[24]

    Figure  7.  Side-view image of discharge phenomenon when insulating sleeve diameter is 4 mm[24]

    图  8  绝缘套筒直径为1 mm时的电极结构示意图及参数和电场分布图

    Figure  8.  When the insulating sleeve diameter is 1 mm, schematic of electrode structure and its parameters and electric field distribution[24]

    图  9  绝缘套筒直径为1 mm时的放电现象侧视图[24]

    Figure  9.  Side-view image of discharge phenomenon when insulating sleeve diameter is 1 mm[24]

    图  10  脉冲金属离子等离子体推进器结构及其参数[25]

    Figure  10.  PMIPT structures and their parameters[25]

    图  11  不同推进器放电现象侧视图[25]

    Figure  11.  Side-view images of discharge phenomenon for PMIPT with different structures[25]

    图  12  典型的放电电压,阴极电流及阳极电流波形图[25]

    Figure  12.  Typical waveforms of discharge voltage, cathode current and anode current[25]

    图  13  等离子体密度空间测量位置示意图

    Figure  13.  Schematic of measurement points for plasma densities

    图  14  等离子体密度空间分布[25]

    Figure  14.  Spatial angular distributions of plasma densities[25]

    图  15  不同微孔宽度下的放电现象侧视图[25]

    Figure  15.  Side-view images of discharge phenomena for PMIPT structures with different micropore widths[25]

    图  16  不同微孔宽度下的阳极电流波形[25]

    Figure  16.  Anode current waveforms with different micropore widths[25]

    图  17  不同脉冲金属离子等离子体推进器的电场分布

    Figure  17.  Electric field distribution of PMIPT

    图  18  不同脉冲金属离子等离子体推进器的磁场分布[26]

    Figure  18.  Magnetic field distribution of PMIPT[26]

    图  19  脉冲金属离子等离子体推进器结构示意图及其参数

    Figure  19.  Schematic of PMIPT structures and parameters

    图  20  不同脉冲金属离子等离子体推进器放电现象侧视图[27]

    Figure  20.  Side-view images of discharge phenomenon for different PMIPT structures (the second-anode is not shown in the picture because of its long distance from the cathode)[27]

    图  21  典型的放电电压,阴极电流及阳极电流波形[27]

    Figure  21.  Typical waveforms of discharge voltage, cathode current and anode current (the anode current refers to that flowing through the first anode)[27]

    图  22  等离子体密度空间分布构[27]

    Figure  22.  Spatial angular distributions of plasma densities[27]

    表  1  两种不同裸阳极电极结构的放电参数及等离子体生成

    Table  1.   Electrical parameters and plasma generation of two different exposed-anode electrode structures

    electrode structuredischarge voltage/kVcathode current/Aanode current/Aplasma density/(1016 m−3)propagation speed/(km·s−1)
    EAS131101103.17.1
    EASIS101309014.58.2
    下载: 导出CSV

    表  2  带有不同阳极结构的电极的电参数[25]

    Table  2.   Electrical parameters of electrode with different anode structures[25]

    electrode structuredischarge voltage/kVcathode current/Aanode current/Aduration of cathode current/µsduration of anode current/µs
    EASIS91045817.617.6
    IAS9880230
    IASM91044617.616
    下载: 导出CSV

    表  3  带有不同阳极结构的电极的等离子体参数[25]

    Table  3.   Plasma parameters of electrodes with different anode structures[25]

    electrode structureplasma density/(1018 m−3)point of peak plasma density/(°)propagation speed/(km·s−1)plasma length/mm
    EASIS2.9408.55
    IAS9.7009.64
    IASM16.401511.19
    下载: 导出CSV

    表  4  不同微孔宽度条件下电参数[25]

    Table  4.   Electrical parameters with different micropore widths[25]

    W/mmdischarge voltage/kVcathode current/Aanode current/Aduration of cathode current/µsduration of anode current/µs
    0.291042317.69
    1.091044617.616
    3.091045017.617
    下载: 导出CSV

    表  5  不同微孔宽度条件下等离子体参数[25]

    Table  5.   Plasma parameters with different micropore widths[25]

    W/mmplasma density/(1018 m−3)point of peak plasma density/(°)propagation speed/(km·s−1)plasma length/mm
    0.237.31533.216
    1.016.41511.19
    3.011.3159.36
    下载: 导出CSV

    表  6  相同阴极电流时不同电极结构的电参数及生成的等离子参数

    Table  6.   Electrical parameters and plasma parameters of different electrode structures at same cathode current

    anode structuredischarge voltage/kVcathode current/Aanode current/Aplasma density/(1016 m−3)
    CAS152502502.95
    SpAS152502506.25
    下载: 导出CSV
  • [1] Vondra R, Thomassen K, Solbes A. A pulsed electric thruster for satellite control[J]. Proceedings of the IEEE, 1971, 59(2): 271-277. doi: 10.1109/PROC.1971.8132
    [2] Rayburn C D, Campbell M E, Mattick A T. Pulsed plasma thruster system for microsatellites[J]. Journal of Spacecraft and Rockets, 2005, 42(1): 161-170. doi: 10.2514/1.15422
    [3] Frisbee R H. Advanced space propulsion for the 21st century[J]. Journal of Propulsion and Power, 2003, 19(6): 1129-1154. doi: 10.2514/2.6948
    [4] Mazouffre S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches[J]. Plasma Sources Science and Technology, 2016, 25: 033002.
    [5] Burton R L, Turchi P J. Pulsed plasma thruster[J]. Journal of Propulsion and Power, 1998, 14(5): 716-735. doi: 10.2514/2.5334
    [6] Haque S E, Keidar M, Lee T. Low-thrust orbital maneuver analysis for cubesat spacecraft with a micro-cathode arc thruster subsystem[C]//Proceedings of 33rd International Electric Propulsion Conference. Washington, USA, 2013.
    [7] Coletti M, Ciaralli S, Gabriel S B. PPT development for nanosatellite applications: experimental results[J]. IEEE Transactions on Plasma Science, 2015, 43(1): 218-225. doi: 10.1109/TPS.2014.2368054
    [8] 黄天坤, 武志文, 刘向阳, 等. 脉冲等离子体推力器电离机制数值分析[J]. 高电压技术, 2015, 41(9):2958-2964. (Huang Tiankun, Wu Zhiwen, Liu Xiangyang, et al. Numerical analysis on the ionization mechanism of pulsed plasma thrusters[J]. High Voltage Engineering, 2015, 41(9): 2958-2964
    [9] Ling W Y L, Zhang Zhe, Tang Haibin, et al. In-plume acceleration of leading-edge ions from a pulsed plasma thruster[J]. Plasma Sources Science and Technology, 2018, 27: 104002. doi: 10.1088/1361-6595/aae19d
    [10] Schein J, Qi N, Binder R, et al. Inductive energy storage driven vacuum arc thruster[J]. Review of Scientific Instruments, 2002, 73(2): 925-927. doi: 10.1063/1.1428784
    [11] 刘文正, 王浩. 同轴电极结构下真空放电等离子体生成及传播特性[J]. 强激光与粒子束, 2013, 25(8):2111-2116. (Liu Wenzheng, Wang Hao. Generation and propagation characteristics of vacuum discharge plasma with co-axial electrodes[J]. High Power Laser and Particle Beams, 2013, 25(8): 2111-2116 doi: 10.3788/HPLPB20132508.2111
    [12] Keidar M, Zhuang Taisen, Shashurin A, et al. Electric propulsion for small satellites[J]. Plasma Physics and Controlled Fusion, 2015, 57: 014005. doi: 10.1088/0741-3335/57/1/014005
    [13] Plyutto A A, Ryzhkov V N, Kapin A T. High speed plasma streams in vacuum arcs[J]. Soviet Physics Jetp, 1965, 20(2): 328-337.
    [14] Bolotov A, Kozyrev A, Korolev Y. A physical model of the low-current-density vacuum arc[J]. IEEE Transactions on Plasma Science, 1995, 23(6): 884-892. doi: 10.1109/27.476470
    [15] Beilis I I. Modeling of a microscale short vacuum arc for a space propulsion thruster[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2163-2166. doi: 10.1109/TPS.2008.2004217
    [16] Lukas J, Teel G, Kolbeck J, et al. High thrust-to-power ratio micro-cathode arc thruster[J]. AIP Advances, 2016, 6: 025311. doi: 10.1063/1.4942111
    [17] 耿金越, 熊子昌, 龙军, 等. 微阴极电弧推力器研究进展[J]. 深空探测学报, 2017, 4(3):212-218, 231. (Geng Jinyue, Xiong Zichang, Long Jun, et al. The research progress in the micro-cathode arc thruster[J]. Journal of Deep Space Exploration, 2017, 4(3): 212-218, 231
    [18] Polk J E, Sekerak M J, Ziemer J K, et al. A theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2167-2179. doi: 10.1109/TPS.2008.2004374
    [19] Neumann P R C, Bilek M M M, Tarrant R N, et al. A pulsed cathodic arc spacecraft propulsion system[J]. Plasma Sources Science and Technology, 2009, 18: 045005. doi: 10.1088/0963-0252/18/4/045005
    [20] Krinberg I A. Three modes of vacuum arc plasma expansion in the absence and presence of a magnetic field[J]. IEEE Transactions on Plasma Science, 2005, 33(5): 1548-1552. doi: 10.1109/TPS.2005.856475
    [21] Liu Wenzheng, Zhang Dejin, Kong Fei. The impact of electrode configuration on characteristics of vacuum discharge plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. doi: 10.1088/1009-0630/14/2/08
    [22] Liu Wenzheng, Wang Hao, Zhang Dejin. Impact of the electric field distribution on the generation characteristics of vacuum-arc discharge plasmas[J]. IEEE Transactions on Plasma Science, 2013, 41(7): 1690-1695. doi: 10.1109/TPS.2013.2262314
    [23] Liu Wenzheng, Wang Hao, Dou Zhijun. Impact of the insulator on the electric field and generation characteristics of vacuum arc metal plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. doi: 10.1088/1009-0630/16/2/09
    [24] Tian Jia, Liu Wenzheng, Cui Weisheng, et al. Generation characteristics of a metal ion plasma jet in vacuum discharge[J]. Plasma Science and Technology, 2018, 20: 085403. doi: 10.1088/2058-6272/aabedf
    [25] Tian Jia, Liu Wenzheng, Gao Yongjie, et al. Discharge and metallic plasma generation characteristics of an insulated anode with a micropore[J]. Physics of Plasmas, 2019, 26: 023511. doi: 10.1063/1.5078677
    [26] 刘文正, 陈修阳, 崔伟胜, 等. 锥–螺旋电极在真空等离子体生成中的作用[J]. 高电压技术, 2017, 43(6):1863-1867. (Liu Wenzheng, Chen Xiuyang, Cui Weisheng, et al. Impact of cone-spiral electrode on generation characteristics of vacuum-arc discharge plasmas[J]. High Voltage Engineering, 2017, 43(6): 1863-1867
    [27] Cui Wensheng, Liu Wenzheng, Gao Yongjie, et al. Discharge characterization of a multi-anode electrode geometry for vacuum arc thruster[J]. Plasma Sources Science and Technology, 2019, 28: 125010. doi: 10.1088/1361-6595/ab27d8
    [28] Andruczyk D, Tarrant R N, James B W, et al. Langmuir probe study of a titanium pulsed filtered cathodic arc discharge[J]. Plasma Sources Science and Technology, 2006, 15(3): 533-537. doi: 10.1088/0963-0252/15/3/032
    [29] Borthakur S, Talukdar N, Neog N K, et al. Study of plasma parameters in a pulsed plasma accelerator using triple Langmuir probe[J]. Physics of Plasmas, 2018, 25: 013532. doi: 10.1063/1.5009796
    [30] Shao Jiahang, Antipov S P, Baryshev S V, et al. Observation of field-emission dependence on stored energy[J]. Physical Review Letters, 2015, 115: 264802. doi: 10.1103/PhysRevLett.115.264802
    [31] Myers R M, Arrington L A, Pencil E J, et al. Pulsed plasma thruster contamination[C]//Proceedings of the 32nd Joint Propulsion Conference and Exhibit. Lake Buena Vista, 1996.
  • 加载中
图(22) / 表(6)
计量
  • 文章访问数:  1488
  • HTML全文浏览量:  513
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-21
  • 修回日期:  2021-05-17
  • 网络出版日期:  2021-06-05
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回