Generation and propagation characteristics of plasma applied to pulsed metal ion plasma thruster
-
摘要: 综述了不同阳极结构脉冲金属离子等离子体推进器的放电特性、等离子体生成及传播特性。首先,讨论了一种带有绝缘套筒的裸阳极推进器结构。对比分析了无、有绝缘套筒的裸阳极推进器的等离子体生成及传播特性的区别。结果表明,绝缘套筒阻碍了阴极近旁带电粒子的径向运动,提高了沿绝缘套筒轴向喷射出去的等离子体的喷射性能。此外,发现采用裸阳极推进器结构放电过程中会有大量带电粒子进入阳极。其次,讨论了一种绝缘阳极推进器结构。结果表明,采用绝缘阳极结构进一步提高了沿绝缘套筒轴向喷射出去的等离子体密度。但是,与裸阳极推进器结构相比,等离子体的生成量减少。再次,讨论了一种微孔绝缘阳极推进器结构。结果表明,与裸阳极推进器结构相比,采用微孔绝缘阳极推进器结构生成的等离子体的密度峰值和传播速度峰值分别提高了12.6倍、3.9倍。最后,分别讨论了一种螺旋阳极推进器结构和一种多阳极推进器结构。结果表明,这两种推进器结构分别利用放电过程中形成的自磁场及电场有效提高了等离子体羽流的定向喷射性能。本研究可以为金属等离子体喷射性能的提高以及脉冲金属离子等离子体推进器的设计提供支持。Abstract: In this paper, discharge characteristics, plasma generation and propagation characteristics of pulsed metal ion plasma thruster (PMIPT) using different anode structures are reviewed. First of all, a PMIPT using an exposed anode structure with an insulating sleeve (EASIS) is discussed. Differences in plasma generation and propagation characteristics between the EASIS-PMIPT and the PMIPT using an exposed anode structure without an insulating sleeve (EAS-PMIPT) are analyzed. Results show that the insulating sleeve blocks radial diffusion of generated charged particles near cathode, and improves the ejection performance of plasma. In addition, it is found that a large number of charged particles enters anode during discharge with an exposed anode (EA). Then, a PMIPT using an insulated anode structure (IAS) is discussed. Results indicate that peak density of plasma ejected along axial direction of insulating sleeve is further increased by using an IAS. However, compared with the PMIPT with an EA, production of plasma is reduced. Furthermore, a PMIPT using an IAS with a micropore (IASM) is discussed. It is revealed that, compared with the PMIPT with an EA, plasma peak density and propagation velocity when adopting an IASM increase by 12.6 times and 3.9 times respectively. Eventually, PMIPT structures with a spiral anode structure (SpAS) and a multi-anode structure (MAS) are discussed respectively. Results show that for the two thrusters, directional ejection performance of plasma plumes are effectively improved by using the self-magnetic field and electric field during discharge respectively. This study will provide support for improvement of metal plasma ejection performance and the design of a PMIPT.
-
图 8 绝缘套筒直径为1 mm时的电极结构示意图及参数和电场分布图
Figure 8. When the insulating sleeve diameter is 1 mm, schematic of electrode structure and its parameters and electric field distribution[24]
表 1 两种不同裸阳极电极结构的放电参数及等离子体生成
Table 1. Electrical parameters and plasma generation of two different exposed-anode electrode structures
electrode structure discharge voltage/kV cathode current/A anode current/A plasma density/(1016 m−3) propagation speed/(km·s−1) EAS 13 110 110 3.1 7.1 EASIS 10 130 90 14.5 8.2 表 2 带有不同阳极结构的电极的电参数[25]
Table 2. Electrical parameters of electrode with different anode structures[25]
electrode structure discharge voltage/kV cathode current/A anode current/A duration of cathode current/µs duration of anode current/µs EASIS 9 104 58 17.6 17.6 IAS 9 88 0 23 0 IASM 9 104 46 17.6 16 表 3 带有不同阳极结构的电极的等离子体参数[25]
Table 3. Plasma parameters of electrodes with different anode structures[25]
electrode structure plasma density/(1018 m−3) point of peak plasma density/(°) propagation speed/(km·s−1) plasma length/mm EASIS 2.94 0 8.5 5 IAS 9.70 0 9.6 4 IASM 16.40 15 11.1 9 W/mm discharge voltage/kV cathode current/A anode current/A duration of cathode current/µs duration of anode current/µs 0.2 9 104 23 17.6 9 1.0 9 104 46 17.6 16 3.0 9 104 50 17.6 17 W/mm plasma density/(1018 m−3) point of peak plasma density/(°) propagation speed/(km·s−1) plasma length/mm 0.2 37.3 15 33.2 16 1.0 16.4 15 11.1 9 3.0 11.3 15 9.3 6 表 6 相同阴极电流时不同电极结构的电参数及生成的等离子参数
Table 6. Electrical parameters and plasma parameters of different electrode structures at same cathode current
anode structure discharge voltage/kV cathode current/A anode current/A plasma density/(1016 m−3) CAS 15 250 250 2.95 SpAS 15 250 250 6.25 -
[1] Vondra R, Thomassen K, Solbes A. A pulsed electric thruster for satellite control[J]. Proceedings of the IEEE, 1971, 59(2): 271-277. doi: 10.1109/PROC.1971.8132 [2] Rayburn C D, Campbell M E, Mattick A T. Pulsed plasma thruster system for microsatellites[J]. Journal of Spacecraft and Rockets, 2005, 42(1): 161-170. doi: 10.2514/1.15422 [3] Frisbee R H. Advanced space propulsion for the 21st century[J]. Journal of Propulsion and Power, 2003, 19(6): 1129-1154. doi: 10.2514/2.6948 [4] Mazouffre S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches[J]. Plasma Sources Science and Technology, 2016, 25: 033002. [5] Burton R L, Turchi P J. Pulsed plasma thruster[J]. Journal of Propulsion and Power, 1998, 14(5): 716-735. doi: 10.2514/2.5334 [6] Haque S E, Keidar M, Lee T. Low-thrust orbital maneuver analysis for cubesat spacecraft with a micro-cathode arc thruster subsystem[C]//Proceedings of 33rd International Electric Propulsion Conference. Washington, USA, 2013. [7] Coletti M, Ciaralli S, Gabriel S B. PPT development for nanosatellite applications: experimental results[J]. IEEE Transactions on Plasma Science, 2015, 43(1): 218-225. doi: 10.1109/TPS.2014.2368054 [8] 黄天坤, 武志文, 刘向阳, 等. 脉冲等离子体推力器电离机制数值分析[J]. 高电压技术, 2015, 41(9):2958-2964. (Huang Tiankun, Wu Zhiwen, Liu Xiangyang, et al. Numerical analysis on the ionization mechanism of pulsed plasma thrusters[J]. High Voltage Engineering, 2015, 41(9): 2958-2964 [9] Ling W Y L, Zhang Zhe, Tang Haibin, et al. In-plume acceleration of leading-edge ions from a pulsed plasma thruster[J]. Plasma Sources Science and Technology, 2018, 27: 104002. doi: 10.1088/1361-6595/aae19d [10] Schein J, Qi N, Binder R, et al. Inductive energy storage driven vacuum arc thruster[J]. Review of Scientific Instruments, 2002, 73(2): 925-927. doi: 10.1063/1.1428784 [11] 刘文正, 王浩. 同轴电极结构下真空放电等离子体生成及传播特性[J]. 强激光与粒子束, 2013, 25(8):2111-2116. (Liu Wenzheng, Wang Hao. Generation and propagation characteristics of vacuum discharge plasma with co-axial electrodes[J]. High Power Laser and Particle Beams, 2013, 25(8): 2111-2116 doi: 10.3788/HPLPB20132508.2111 [12] Keidar M, Zhuang Taisen, Shashurin A, et al. Electric propulsion for small satellites[J]. Plasma Physics and Controlled Fusion, 2015, 57: 014005. doi: 10.1088/0741-3335/57/1/014005 [13] Plyutto A A, Ryzhkov V N, Kapin A T. High speed plasma streams in vacuum arcs[J]. Soviet Physics Jetp, 1965, 20(2): 328-337. [14] Bolotov A, Kozyrev A, Korolev Y. A physical model of the low-current-density vacuum arc[J]. IEEE Transactions on Plasma Science, 1995, 23(6): 884-892. doi: 10.1109/27.476470 [15] Beilis I I. Modeling of a microscale short vacuum arc for a space propulsion thruster[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2163-2166. doi: 10.1109/TPS.2008.2004217 [16] Lukas J, Teel G, Kolbeck J, et al. High thrust-to-power ratio micro-cathode arc thruster[J]. AIP Advances, 2016, 6: 025311. doi: 10.1063/1.4942111 [17] 耿金越, 熊子昌, 龙军, 等. 微阴极电弧推力器研究进展[J]. 深空探测学报, 2017, 4(3):212-218, 231. (Geng Jinyue, Xiong Zichang, Long Jun, et al. The research progress in the micro-cathode arc thruster[J]. Journal of Deep Space Exploration, 2017, 4(3): 212-218, 231 [18] Polk J E, Sekerak M J, Ziemer J K, et al. A theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2167-2179. doi: 10.1109/TPS.2008.2004374 [19] Neumann P R C, Bilek M M M, Tarrant R N, et al. A pulsed cathodic arc spacecraft propulsion system[J]. Plasma Sources Science and Technology, 2009, 18: 045005. doi: 10.1088/0963-0252/18/4/045005 [20] Krinberg I A. Three modes of vacuum arc plasma expansion in the absence and presence of a magnetic field[J]. IEEE Transactions on Plasma Science, 2005, 33(5): 1548-1552. doi: 10.1109/TPS.2005.856475 [21] Liu Wenzheng, Zhang Dejin, Kong Fei. The impact of electrode configuration on characteristics of vacuum discharge plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. doi: 10.1088/1009-0630/14/2/08 [22] Liu Wenzheng, Wang Hao, Zhang Dejin. Impact of the electric field distribution on the generation characteristics of vacuum-arc discharge plasmas[J]. IEEE Transactions on Plasma Science, 2013, 41(7): 1690-1695. doi: 10.1109/TPS.2013.2262314 [23] Liu Wenzheng, Wang Hao, Dou Zhijun. Impact of the insulator on the electric field and generation characteristics of vacuum arc metal plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. doi: 10.1088/1009-0630/16/2/09 [24] Tian Jia, Liu Wenzheng, Cui Weisheng, et al. Generation characteristics of a metal ion plasma jet in vacuum discharge[J]. Plasma Science and Technology, 2018, 20: 085403. doi: 10.1088/2058-6272/aabedf [25] Tian Jia, Liu Wenzheng, Gao Yongjie, et al. Discharge and metallic plasma generation characteristics of an insulated anode with a micropore[J]. Physics of Plasmas, 2019, 26: 023511. doi: 10.1063/1.5078677 [26] 刘文正, 陈修阳, 崔伟胜, 等. 锥–螺旋电极在真空等离子体生成中的作用[J]. 高电压技术, 2017, 43(6):1863-1867. (Liu Wenzheng, Chen Xiuyang, Cui Weisheng, et al. Impact of cone-spiral electrode on generation characteristics of vacuum-arc discharge plasmas[J]. High Voltage Engineering, 2017, 43(6): 1863-1867 [27] Cui Wensheng, Liu Wenzheng, Gao Yongjie, et al. Discharge characterization of a multi-anode electrode geometry for vacuum arc thruster[J]. Plasma Sources Science and Technology, 2019, 28: 125010. doi: 10.1088/1361-6595/ab27d8 [28] Andruczyk D, Tarrant R N, James B W, et al. Langmuir probe study of a titanium pulsed filtered cathodic arc discharge[J]. Plasma Sources Science and Technology, 2006, 15(3): 533-537. doi: 10.1088/0963-0252/15/3/032 [29] Borthakur S, Talukdar N, Neog N K, et al. Study of plasma parameters in a pulsed plasma accelerator using triple Langmuir probe[J]. Physics of Plasmas, 2018, 25: 013532. doi: 10.1063/1.5009796 [30] Shao Jiahang, Antipov S P, Baryshev S V, et al. Observation of field-emission dependence on stored energy[J]. Physical Review Letters, 2015, 115: 264802. doi: 10.1103/PhysRevLett.115.264802 [31] Myers R M, Arrington L A, Pencil E J, et al. Pulsed plasma thruster contamination[C]//Proceedings of the 32nd Joint Propulsion Conference and Exhibit. Lake Buena Vista, 1996.