Research on transportation vibration environmental adaptability of coaxial pulse forming line
-
摘要: 为了准确评估某MV级Tesla型脉冲功率源的运输振动环境适应性水平,针对脉冲功率源中采用悬臂绝缘支撑结构的同轴脉冲形成线,通过仿真和试验结合的方法开展研究。针对叠层结构式内外磁芯,提出一种通过结构元胞等效材料参数和坐标变换的等效建模方法进行有限元建模,通过模态试验修正有限元模型,首次对比研究了绝缘油对形成线的模态频率和阻尼的影响,仿真分析了形成线车载运输典型工况的应力及响应,设计实施了大尺寸形成线等效件振动试验进行验证。通过振动试验发现了形成线结构存在非线性,通过仿真分析和等效件试验验证,同轴脉冲形成线现有结构设计基本满足车载运输振动环境适应性要求。Abstract: To evaluate the vibration environmental adaptability of Tesla-type pulse generator under vehicle transportation condition, simulation and verification test were carried out for the coaxial pulse forming line (PFL) with cantilever support insulators. An equivalent modeling was proposed for the inner and outer magnetic cores with laminated structure. The finite element model was modified according to the modal test results. Thus the effect of insulating oil on the modal frequency and damping of the PFL was studied, the stress and response of PFL under typical transportation conditions were obtained by simulation, and the vibration test of PFL equivalent parts was conducted to verify the simulation result. It was found that the structure of the PFL were nonlinear in the vibration test. The simulation analysis and the vibration test of equivalent parts verify that the existing structure of the coaxial PFL meets the requirements of vehicle transportation vibration environmental adaptability.
-
表 1 结构元胞的等效材料参数
Table 1. Equivalent material parameters of structure cell
E1 / GPa E2 / GPa E3 / GPa V12 V13 V23 G12 / GPa G13 / GPa G23 / GPa 152 152 14.10 0.29 0.28 0.28 60.50 11.03 11.03 表 2 形成线模态分析结果
Table 2. Modal analysis results of PFL
mode frequency/Hz modal shape 1 24.36 lateral bending of inner conductor (x direction) 2 24.41 vertical bending of inner conductor (y direction) 3 34.05 bending of inner conductor along the z direction 4 43.53 twisting of inner conductor around the z-axis 表 3 形成线两种状态模态试验结果对比
Table 3. Modal test results of PFL under two different conditions
mode modal shape frequency
(oil-free)/Hzfrequency
(full of oil)/Hzdamping coefficient
(oil-free)/%damping coefficient
(full of oil)/%1 lateral bending of inner conductor (x direction) 33.38 18.03 1.71 5.89 2 vertical bending of inner conductor (y direction) 37.80 18.92 1.30 10.61 3 bending of inner conductor along the z direction 57.43 42.64 1.10 7.96 4 twisting of inner conductor around the z-axis 42.35 51.62 1.50 6.63 表 4 形成线仿真频率与试验频率对比(有油)
Table 4. Contrast between simulation frequency and measured frequency of PFL (full of oil)
mode modal shape simulation frequency/Hz measured frequency/Hz error/% 1 lateral bending of inner conductor (x direction) 24.36 18.03 25.99 2 vertical bending of inner conductor (y direction) 24.41 18.92 22.49 3 bending of inner conductor along the z direction 34.05 42.64 −25.23 4 twisting of inner conductor around the z−axis 43.53 51.62 −18.58 表 5 试验频率与修正模型计算频率对比(有油)
Table 5. Contrast between measured frequency and simulation frequency of modified model (full of oil)
mode modal shape measured frequency/Hz modified simulation frequency/Hz error/% 1 lateral bending of inner conductor (x direction) 18.03 18.95 5.10 2 vertical bending of inner conductor (y direction) 18.92 19.02 0.53 3 bending of inner conductor along the z direction 42.64 30.61 −14.61 4 twisting of inner conductor around the z−axis 51.62 46.16 −10.58 表 6 计算结果汇总(车载运输环境)
Table 6. Calculation results (vehicle transportation condition)
condition maximum acceleration
(middle conductor)/gmaximum dynamic
stress/MPatotal stress/
MPamaximum stress
(tail insulator)/MPahighway transportation(vertical) 1.95 50.08 223.08 27.78 wheel vehicle transportation(vertical) 2.40 73.46 246.46 40.99 impact(20g,vertical) 39.95 60.22 233.22 33.67 表 7 中筒尾端响应加速度汇总表
Table 7. Response acceleration summary of middle conductor
test condition longitudinal acceleration/g vertical acceleration/g lateral acceleration/g highway transportation 1.34 2.01 0.53 wheel vehicle transportation 1.76 2.05 2.66 impact(5g) 9.41 13.11 8.44 Note:The results of highway and wheel vehicle transportation tests were root mean square values. 表 8 横向(z向)不同量级扫频振动试验内筒上测点的一阶响应频率
Table 8. First mode frequency of inner conductor under different magnitudes of sine sweep tests (z direction)
magnitude/(g2·Hz−1) response frequency/Hz 0.001 26 0.000 1 26 0.000 01 30 0.000 001 30 0.000 000 1 31 -
[1] 彭建昌, 苏建仓, 张喜波, 等. 20 GW/100 Hz脉冲功率源研制[J]. 强激光与粒子束, 2011, 23(11):2919-2924. (Peng Jiancang, Su Jiancang, Zhang Xibo, et al. Development of 20 GW/100 Hz repetitive pulsed accelerator[J]. High Power Laser and Particle Beams, 2011, 23(11): 2919-2924 doi: 10.3788/HPLPB20112311.2919 [2] 石磊, 朱郁丰, 卢彦雷, 等. 紧凑Tesla变压器型纳秒脉冲源[J]. 强激光与粒子束, 2014, 26:125001. (Shi Lei, Zhu Yufeng, Lu Yanlei, et al. Compact GW nanosecond pulse generator based on Tesla transformer[J]. High Power Laser and Particle Beams, 2014, 26: 125001 doi: 10.11884/HPLPB201426.125001 [3] Li Rui, Su Jiancang, Zeng Bo, et al. 5-GW Tesla-type pulse generator based on a mixed pulse-forming line[J]. Review of Scientific Instruments, 2020, 91: 074710. doi: 10.1063/5.0008970 [4] 张喜波, 苏建仓, 潘亚峰, 等. 倍宽脉冲形成线[C]//第四届全国脉冲功率会议. 2015: A38.Zhang Xibo, Su Jiancang, Pan Yafeng, et al. Multiple-width pulse forming lines[C]//4th Chinese Pulse Power Conference. 2015: A38. [5] Liu Sheng, Su Jiancang, Zhang Xibo, et al. A Tesla-type long-pulse generator with wide flat-top width based on a double-width pulse-forming line[J]. Laser and Particle Beams, 2018, 36(1): 115-120. doi: 10.1017/S0263034618000034 [6] 范红艳, 张喜波, 刘胜, 等. Tesla型脉冲功率源随机振动响应分析[J]. 现代应用物理, 2018, 9:031003. (Fan Hongyan, Zhang Xibo, Liu Sheng, et al. Random vibration analysis of Tesla-type pulse generator[J]. Modern Applied Physics, 2018, 9: 031003 [7] 杨万理, 李乔. 深水桥梁墩-水耦合作用计算模式对比研究[J]. 世界桥梁, 2012, 40(2):46-50. (Yang Wanli, Li Qiao. Comparative study of pier-water interaction calculation model of deep water bridge[J]. World Bridges, 2012, 40(2): 46-50 [8] Xu Kunpeng, Sun Wei, Gao Junnan. Mistuning identification and model updating of coating blisk based on modal test[J]. Mechanical Systems and Signal Processing, 2019, 121: 299-321. doi: 10.1016/j.ymssp.2018.11.029 [9] 龙吟, 任晓辉, 张珂, 等. 基于模态实验的轨道牵引电机整机有限元模型的建立[J]. 铁道科学与工程学报, 2019, 16(6):1553-1559. (Long Yin, Ren Xiaohui, Zhang Ke, et al. Finite element modeling of rail traction motor based on modal experiments[J]. Journal of Railway Science and Engineering, 2019, 16(6): 1553-1559 [10] 杜平安, 于亚婷, 刘建涛. 有限元法——原理、建模及应用[M]. 北京: 国防工业出版社, 2004.Du Pingan, Yu Yating, Liu Jiantao. Finite element method—principle, modeling and application[M]. Beijing: National Defense Industry Press, 2004. [11] 任超, 陈建均, 潘红良. 随机短纤维增强复合材料弹性模量预测模型[J]. 复合材料学报, 2012, 29(4):191-194. (Ren Chao, Chen Jianjun, Pan Hongliang. Prediction model for elastic modulus of random short fiber reinforced composite[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 191-194 [12] 常熠存, 耿悦, 王玉银, 等. 基于两相复合材料的再生混凝土弹性模量预测模型[J]. 建筑结构学报, 2020, 41(12):165-173. (Chang Yicun, Geng Yue, Wang Yuyin, et al. Models of elastic modulus for concrete made with recycled coarse aggregate based on two-phase composite material[J]. Journal of Building Structures, 2020, 41(12): 165-173 [13] 闫小乐, 谷立臣. 液压系统油液有效体积模量的在线软测量[J]. 机械工程学报, 2011, 47(10):126-132. (Yan Xiaole, Gu Lichen. Online measurement of effective bulk modulus in hydraulic system by the soft-sensing model[J]. Journal of Mechanical Engineering, 2011, 47(10): 126-132 doi: 10.3901/JME.2011.10.126 [14] Gholizadeh H, Burton R, Schoenau G. Fluid bulk modulus: A literature survey[J]. International Journal of Fluid Power, 2011, 12(3): 5-15. doi: 10.1080/14399776.2011.10781033 [15] 王在铎, 马斌捷, 贾亮, 等. 水下附加质量及阻尼的试验研究[J]. 强度与环境, 2018, 45(3):15-19. (Wang Zaiduo, Ma Binjie, Jia Liang, et al. Experimental study of added mass and damping in water[J]. Structure and Environment Engineering, 2018, 45(3): 15-19 [16] 钱志英, 韩世泽, 马为佳, 等. 航天器振动试验中的频率漂移现象研究[J]. 航天器环境工程, 2018, 35(4):342-347. (Qian Zhiying, Han Shize, Ma Weijia, et al. Natural frequency drift in the vibration test of spacecraft[J]. Spacecraft Environment Engineering, 2018, 35(4): 342-347 doi: 10.12126/j.issn.1673-1379.2018.04.006