留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空断路器弧后残余等离子体的探针诊断方法

马廷彪 陈里昂 徐铭铭 陈辉 葛国伟 程显

马廷彪, 陈里昂, 徐铭铭, 等. 真空断路器弧后残余等离子体的探针诊断方法[J]. 强激光与粒子束, 2021, 33: 065013. doi: 10.11884/HPLPB202133.210071
引用本文: 马廷彪, 陈里昂, 徐铭铭, 等. 真空断路器弧后残余等离子体的探针诊断方法[J]. 强激光与粒子束, 2021, 33: 065013. doi: 10.11884/HPLPB202133.210071
Ma Tingbiao, Chen Li’ang, Xu Mingming, et al. Probe diagnostics of post-arc residual plasma of vacuum circuit breakers[J]. High Power Laser and Particle Beams, 2021, 33: 065013. doi: 10.11884/HPLPB202133.210071
Citation: Ma Tingbiao, Chen Li’ang, Xu Mingming, et al. Probe diagnostics of post-arc residual plasma of vacuum circuit breakers[J]. High Power Laser and Particle Beams, 2021, 33: 065013. doi: 10.11884/HPLPB202133.210071

真空断路器弧后残余等离子体的探针诊断方法

doi: 10.11884/HPLPB202133.210071
基金项目: 河南省科技攻关计划项目(192102210142)
详细信息
    作者简介:

    马廷彪(1962—),男,主要从事配电网设备故障诊断技术研究

  • 中图分类号: TM561

Probe diagnostics of post-arc residual plasma of vacuum circuit breakers

  • 摘要: 真空断路器开断过程中弧后残余等离子体是表征其开断性能的重要参量。基于探针电子饱和区域工作原理,提出了一种真空电弧弧后残余等离子体电子密度测量方法,分析了其结构和工作原理。设计了探针诊断系统的探针结构和控制系统,基于可拆卸真空腔体进行了残余等离子体电子密度的单探针测量实验,采用高速相机观测电弧发展演变过程,研究了电流大小、触头结构等参数对残余等离子体衰减过程的影响。通过前人其他诊断方法对比验证了该测量方法的有效性,为后续真空断路器弧后微观特性研究提供了一种低成本、有效的诊断方法。
  • 图  1  探针工作的伏安特性曲线[20]

    Figure  1.  Volt-ampere characteristic curve of the probe operation

    图  2  探针诊断电路和探针结构

    Figure  2.  Probe diagnostic circuit and structure

    图  3  探针布置方式

    1—Mo wire;2—Al2O3 ceramic pipe;3—epoxy resin pipe;4—ϕ8 nylon screw rod;5—ϕ8 nylon nut;6—nylon adaptor;7—ϕ10 nylon screw rod;8—counterweight base。

    Figure  3.  Configuration of the probe diagnostics

    图  4  探针控制电路原理图

    Figure  4.  Probe control loop

    图  5  实验主控制器

    Figure  5.  Test main controller

    图  6  探针诊断试验平台

    Figure  6.  Test platform

    图  7  探针试验整体波形图

    Figure  7.  Probe test overall waveform

    图  8  探针电流局部放大图

    Figure  8.  Local magnification of probe current

    图  9  电弧过零前0~0.9 ms的电弧图像

    Figure  9.  Arc images at 0~0.9 ms before current crosses zero

    图  10  不同开断电流下的电子密度曲线

    Figure  10.  Electron density curves at different switching current

    图  11  不同类型触头下的电子密度曲线

    Figure  11.  Electron density curves under different types of contacts

    图  12  对比验证试验

    Figure  12.  Comparative verification test

  • [1] 王建华, 耿英三, 刘志远. 输电等级单断口真空断路器理论及其技术[M]. 北京: 机械工业出版社, 2017.

    Wang Jianhua, Geng Yingsan, Liu Zhiyuan. The theory and technology on electrical transmission voltage level single break vacuum interrupter[M]. Beijing: China Machine Press, 2017
    [2] 葛国伟, 张鹏浩, 程显, 等. 真空灭弧室零区剩磁补偿装置及效果[J]. 中国电机工程学报, 2019, 39(11):3272-3279. (Ge Guowei, Zhang Penghao, Cheng Xian, et al. The device and effect of the magnetic field compensation in vacuum interrupters at current-zero[J]. Proceedings of the CSEE, 2019, 39(11): 3272-3279
    [3] 徐蓉, 王珏, 赵莹, 等. 纵磁结构真空灭弧室电磁场及电弧运动特性[J]. 强激光与粒子束, 2012, 24(4):855-858. (Xu Rong, Wang Jue, Zhao Ying, et al. Characteristics of electromagnetic field and arc motion in vacuum interrupter with longitudinal magnetic field contacts[J]. High Power Laser and Particle Beams, 2012, 24(4): 855-858 doi: 10.3788/HPLPB20122404.0855
    [4] 董华军, 廖敏夫, 邹积岩, 等. 基于CCD真空开关电弧等离子体参数诊断方法[J]. 电工技术学报, 2007, 22(6):65-68, 81. (Dong Huajun, Liao Minfu, Zou Jiyan, et al. Methods of diagnosing the plasma parameters in vacuum switching arcs based on CCD[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 65-68, 81 doi: 10.3321/j.issn:1000-6753.2007.06.012
    [5] 罗城, 丛培天, 张天洋, 等. 气体火花开关电极烧蚀研究综述[J]. 强激光与粒子束, 2020, 32:105001. (Luo Cheng, Cong Peitian, Zhang Tianyang, et al. Review of the research on electrode erosion of gas spark switch[J]. High Power Laser and Particle Beams, 2020, 32: 105001
    [6] Orama L R. Numerical modeling of vacuum arc dynamics at current zero using ATP[C]//Presented at the International Conference on Power System Transients. Montreal, Canada: IEEE, 2005.
    [7] Sarrailh P, Garrigues L, Hagelaar G J M, et al. Expanding sheath in a bounded plasma in the context of the post-arc phase of a vacuum arc[J]. Journal of Physics D: Applied Physics, 2008, 41: 015203. doi: 10.1088/0022-3727/41/1/015203
    [8] Zhang Yingyao, Xu Xinye, Jin Lijun, et al. Fractal-based electric field enhancement modeling of vacuum gap electrodes[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1957-1964. doi: 10.1109/TDEI.2017.006364
    [9] Mo Yongpeng, Shi Zongqian, Jia Shenli, et al. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker[J]. Physics of Plasmas, 2015, 22: 023511. doi: 10.1063/1.4913677
    [10] 李兴文, 魏文赋, 吴坚, 等. 激光诱导等离子体光学诊断方法研究综述[J]. 高电压技术, 2015, 41(6):1788-1797. (Li Xingwen, Wei Wenfu, Wu Jian, et al. Review of optical diagnosis methods for the laser produced plasmas[J]. High Voltage Engineering, 2015, 41(6): 1788-1797
    [11] 李志超, 赵航, 龚韬, 等. 激光惯性约束聚变中光学汤姆逊散射研究进展[J]. 强激光与粒子束, 2020, 32:092004. (Li Zhichao, Zhao Hang, Gong Tao, et al. Recent research progress of optical Thomson scattering in laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 092004
    [12] Tomita K, Gojima D, Nagai K, et al. Thomson scattering diagnostics of decay processes of Ar/SF6 gas-blast arcs confined by a nozzle[J]. Journal of Physics D: Applied Physics, 2013, 46: 382001. doi: 10.1088/0022-3727/46/38/382001
    [13] Tomita K, Nagai K, Shimizu T, et al. Thomson scattering diagnostics of atmospheric plasmas in contact with ionic liquids[J]. Applied Physics Express, 2014, 7: 066101. doi: 10.7567/APEX.7.066101
    [14] Inada Y, Kamiya T, Matsuoka S, et al. Gap length dependence of two-dimensional electron and copper vapour density distribution over vacuum plasma[J]. Journal of Instrumentation, 2015, 10: C12007. doi: 10.1088/1748-0221/10/12/C12007
    [15] Wang Haoran, Liu Zhiyuan, Liu Jiankun, et al. Investigation of vacuum arc extinction process by planar laser-induced fluorescence[C]//28th International Symposium on Discharges and Electrical Insulation in Vacuum. Greifswald, Germany: IEEE, 2018: 313-316.
    [16] Wang Zhenxing, Liu Jiankun, Li Yuecheng, et al. Two-dimensional observation of copper atoms after forced extinction of vacuum arcs by laser-induced fluorescence[J]. IEEE Transactions on Plasma Science, 2020, 48(8): 2777-2789. doi: 10.1109/TPS.2020.3008277
    [17] Schneider A V, Popov S A, Dubrovskaya E L, et al. Study of the cathode sheath dynamics after arc current zero crossing using a two-dimensional Langmuir probe system[J]. Russian Physics Journal, 2019, 62(7): 1103-1108. doi: 10.1007/s11182-019-01823-8
    [18] Popov S, Schneider A, Dubrovskaya E, et al. Batrakov. 2-D Lengmuir probe set for diagnostics of plasma density distribution and cathode sheath expansion after current zero in a vacuum interrupter[C]//28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Greifswald: IEEE, 2018: 205-208.
    [19] Klajn A. Plasma parameters after forced switching-off of the current in vacuum[J]. Przegląd Elektrotechniczny, 2013, 89(9): 193-195.
    [20] Schneider A V, Popov S A, Batrakov A V, et al. Diagnostics of the cathode sheath expansion after current zero in a vacuum circuit breaker[J]. IEEE Transactions on Plasma Science, 2011, 39(6): 1349-1353. doi: 10.1109/TPS.2011.2134849
  • 加载中
图(12)
计量
  • 文章访问数:  945
  • HTML全文浏览量:  429
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-05-25
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回