留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Drive laser shaping and transport system for photocathode RF gun

Li Cheng Wang Wenxing Li Weiwei Zhang Haoran Jiang Shimin Gao Panyun He Zhigang Zhang Shancai

李成, 汪文星, 李伟伟, 等. 光阴极微波电子枪驱动激光整形与传输系统[J]. 强激光与粒子束, 2021, 33: 094002. doi: 10.11884/HPLPB202133.210091
引用本文: 李成, 汪文星, 李伟伟, 等. 光阴极微波电子枪驱动激光整形与传输系统[J]. 强激光与粒子束, 2021, 33: 094002. doi: 10.11884/HPLPB202133.210091
Li Cheng, Wang Wenxing, Li Weiwei, et al. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 2021, 33: 094002. doi: 10.11884/HPLPB202133.210091
Citation: Li Cheng, Wang Wenxing, Li Weiwei, et al. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 2021, 33: 094002. doi: 10.11884/HPLPB202133.210091

光阴极微波电子枪驱动激光整形与传输系统

doi: 10.11884/HPLPB202133.210091
详细信息
  • 中图分类号: TL503.3

Drive laser shaping and transport system for photocathode RF gun

Funds: Hefei Advanced Light Facility R&D Project
More Information
  • 摘要: 为满足合肥先进光源对高品质注入束流的要求,合肥先进光源预研项目研制了一套光阴极微波电子枪系统作为注入器电子源。为降低空间电荷效应引起的束流发射度增长,对驱动激光整形及传输系统进行了理论和实验研究。通过双折射晶体的脉冲时间整形以及采用光阑高斯截断的空间整形,得到了近似均匀分布的激光脉冲。像传递激光传输光路,实现了光阴极表面激光位置的高稳定性。实验结果显示,光阴极表面的激光位置抖动小于4 µm,激光性能满足实验要求。
  • Figure  1.  Schematic diagram of the overall laser optical system

    Figure  2.  Schematic diagram of pulse stacking scheme

    Figure  3.  Temporal profiles of laser pulse

    Figure  4.  Designed spatial profiles of laser pulse

    Figure  5.  Measured transverse distributions (upper) and horizontal cuts (lower) of laser pulse at different positions around the nominal imaging plane. From left to right, the distances to the nominal imaging plane are −5 cm, 0 cm and 5 cm.

    Figure  6.  Measurement results of laser pulse position and energy

    Table  1.   Laser parameters

    elementwavelength/nmpulse width/fsrepetition rate/Hzpulse energy/nJ
    oscillator8004279.33×1069
    amplifier8001031−10013×106
    third harmonic generator266.71.5×1031−1002×106
    下载: 导出CSV
  • [1] Akre R, Dowell D, Emma P, et al. Commissioning the linac coherent light source injector[J]. Physical Review Special Topics-Accelerators and Beams, 2008, 11: 030703. doi: 10.1103/PhysRevSTAB.11.030703
    [2] Zhu Pengfei, Zhu Y, Hidaka Y, et al. Femtosecond time-resolved MeV electron diffraction[J]. New Journal of Physics, 2015, 17: 063004. doi: 10.1088/1367-2630/17/6/063004
    [3] Xiang D, Fu F, Zhang J, et al. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 759: 74-82.
    [4] Yang Jinfeng, Kondoh T, Kozawa T, et al. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique[J]. Radiation Physics and Chemistry, 2006, 75(9): 1034-1040. doi: 10.1016/j.radphyschem.2005.09.016
    [5] Chen Han, Yan Lixin, Tian Qili, et al. Commissioning the photoinjector of a gamma-ray light source[J]. Physical Review Accelerators and Beams, 2019, 22: 053403. doi: 10.1103/PhysRevAccelBeams.22.053403
    [6] Kim K J. RF and space-charge effects in laser-driven RF electron guns[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 275(2): 201-218. doi: 10.1016/0168-9002(89)90688-8
    [7] Serafini L, Rosenzweig J B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: mA theory of emittance compensation[J]. Physical Review E, 1997, 55(6): 7565-7590. doi: 10.1103/PhysRevE.55.7565
    [8] Schwarz J, Rambo P K, Smith I C, et al. Simple temporal pulse shaping using two Pockels cells[J]. Optical Engineering, 2005, 44: 094203. doi: 10.1117/1.2052709
    [9] Sharma A K, Patidar R K, Raghuramaiah M, et al. Simple electro-optic technique to generate temporally flat-top laser pulses[J]. Optics Communications, 2011, 284(19): 4596-4600. doi: 10.1016/j.optcom.2011.05.061
    [10] Skeldon M D. Optical pulse-shaping system based on an electro-optic modulator driven by an aperture-coupled-stripline electrical-waveform generator[J]. Journal of the Optical Society of America B, 2002, 19(10): 2423-2426. doi: 10.1364/JOSAB.19.002423
    [11] Field J J, Durfee III C G, Squier J A, et al. Quartic-phase-limited grism-based ultrashort pulse shaper[J]. Optics Letters, 2007, 32(21): 3101-3103. doi: 10.1364/OL.32.003101
    [12] Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Review of Scientific Instruments, 2000, 71(5): 1929-1960. doi: 10.1063/1.1150614
    [13] Weiner A M. Ultrafast optical pulse shaping: a tutorial review[J]. Optics Communications, 2011, 284(15): 3669-3692. doi: 10.1016/j.optcom.2011.03.084
    [14] Loos H, Dowell D, Gilevich S, et al. Temporal E-beam shaping in an S-band accelerator[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 642-644.
    [15] Vicario C, Ghigo A, Cialdi S, et al. Laser temporal pulse shaping experiment for SPARC photoinjector[R]. CARE-Conf-04-030-PHIN, 2004.
    [16] Park Y, Asghari M H, Ahn T J, et al. Transform-limited picosecond pulse shaping based on temporal coherence synthesization[J]. Optics Express, 2007, 15(15): 9584-9599. doi: 10.1364/OE.15.009584
    [17] Wang X T, Feng L, Lan T, et al. Drive laser temporal shaping techniques for Shanghai soft X-ray free electron laser[C]//39th International Free Electron Laser Conference. 2019: 466-468.
    [18] Sharma A K, Tsang T, Rao T. Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses[J]. Physical Review Special Topics-Accelerators and Beams, 2009, 12: 033501. doi: 10.1103/PhysRevSTAB.12.033501
    [19] Wang Dong, Yan Lixin, Huang Wenhui. UV Pulse shaping with α-BBO crystals for the photocathode RF gun[C]//Proceedings of the 7th International Particle Accelerator Conference. 2016: 4079-4081.
    [20] Laskin A, Laskin V. Imaging techniques with refractive beam shaping optics[C]//Proceedings of SPIE 8490, Laser Beam Shaping XIII. 2012: 84900J.
    [21] Laskin A, Laskin V. Beam shaping in high-power laser systems with using refractive beam shapers[C]//Proceedings of SPIE 8433, Laser Sources and Applications. 2012: 84330N.
    [22] Halavanau A, Ha G, Qiang G, et al. Microlens array laser transverse shaping technique for photoemission electron source[DB/OL]. arXiv preprint arXiv: 1609.01661, 2016.
    [23] Jin Yuhua, Hassan A, Jiang Yijian. Freeform microlens array homogenizer for excimer laser beam shaping[J]. Optics Express, 2016, 24(22): 24846-24858. doi: 10.1364/OE.24.024846
    [24] Tomizawa H, Dewa H, Taniuchi T, et al. Adaptive 3-D UV-laser pulse shaping system to minimize emittance for photocathode RF gun and new laser incidence system[C]//Proceedings of FEL. 2007: 298-305.
    [25] Gross M, Qian H J, Boonpornprasert P, et al. Emittance reduction of RF photoinjector generated electron beams by transverse laser beam shaping[J]. Journal of Physics:Conference Series, 2019, 1350: 012046. doi: 10.1088/1742-6596/1350/1/012046
    [26] Zhou Feng, Brachmann A, Emma P, et al. Impact of the spatial laser distribution on photocathode gun operation[J]. Physical Review Special Topics-Accelerators and Beams, 2012, 15: 090701. doi: 10.1103/PhysRevSTAB.15.090701
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  661
  • HTML全文浏览量:  239
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-08-24
  • 网络出版日期:  2021-09-10
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回