Plasma dielectric barrier discharge fluorination modified epoxy resin and its ageing behavior
-
摘要: 等离子体对材料的改性效果随放置时间会有所减弱,即表现出一定的时效性,限制了等离子体改性技术的进一步发展。为了探究等离子体介质阻挡放电(DBD)氟化改性环氧树脂的时效性,利用等离子体介质阻挡放电实现了环氧树脂表面氟化改性,并利用扫描电镜(SEM)、表面轮廓仪、X射线光电子能谱分析(XPS)、接触角测试仪、高阻计和闪络电压、表面电位测试系统对改性前和改性后放置在25 ℃老化箱中0~30 d的环氧树脂表面进行了物理形貌和化学组分的表征以及电气性能的测试。测试结果表明,DBD氟化改性实现了氟元素在环氧树脂表面接枝,这使得环氧树脂表面能降低,表面电阻率减小,陷阱能级变浅,从而加快了表面电位衰减速度,进而提升了沿面闪络电压。同时,等离子体DBD氟化改性环氧树脂表现出一定的时效性,放置30 d后,氟元素含量减少,表面能增大,表面电位衰减速度略有减慢,闪络电压也有所下降,但仍高于未处理的试样。Abstract: The modification effect of plasma on the material will be weakened with the storage time, that is, it shows a certain timeliness, which limits further development of plasma modification technology. To explore ageing behavior of plasma dielectric barrier discharge (DBD) fluorinated epoxy resin, the surface fluorination of epoxy resin was realized by plasma dielectric barrier discharge. Scanning electron microscopy (SEM), surface profilometer, X-ray photoelectron spectroscopy (XPS), contact angle tester, high resistance meter, flashover voltage and surface potential testing system were used to characterize the physical morphology, chemical composition and electrical properties of epoxy resin surface before modification as well as being placed in 25 ℃ aging box for 0−30 d after modification. The experimental results show that fluoride grafting on the surface of epoxy resin is realized by DBD fluorination modification, which reduces the surface energy, surface resistivity and trap level of epoxy resin, thus speeds up the surface potential decay rate and increases the flashover voltage along the surface. After storage of 30 d, the fluorine content decreased, the surface energy increased, the attenuation rate of surface potential slowed down slightly, and the flashover voltage also decreased, but it is still higher than that of the untreated sample.
-
Key words:
- plasma /
- fluorination modification /
- epoxy resin /
- timeliness /
- surface flashover /
- surface charge
-
表 1 试样表面Al,C,O,F原子分数
Table 1. Atom fraction of Al, C, O and F atoms on the surface of the sample
element atom fraction/% 0 d 7 d 30 d 0 min 1 min 3 min 5 min 1 min 3 min 5 min 1 min 3 min 5 min Al 0.25 0.22 0.26 0.5 0.21 0.24 0.58 0.28 0.21 0.66 C 66.43 51.34 47.33 48.99 51.49 48.46 50.31 53.44 49.53 54.45 O 33.26 17.21 11.99 11.85 17.57 13.77 18.79 17.58 16.7 22.14 F 0.06 31.23 40.41 38.66 30.73 37.53 30.32 28.69 33.56 22.76 -
[1] 王婷婷, 章程, 张福增, 等. 氧含量对大气压等离子体薄膜沉积提高环氧树脂沿面耐压的影响[J]. 高电压技术, 2020, 46(10):3708-3714. (Wang Tingting, Zhang Cheng, Zhang Fuzeng, et al. Effect of oxygen concentration on improvement of surface pressure resistance of epoxy resin by atmospheric pressure plasma deposition[J]. High Voltage Engineering, 2020, 46(10): 3708-3714 [2] Li Shengtao, Yu Shihu, Feng Yang. Progress in and prospects for electrical insulating materials[J]. High Voltage, 2016, 1(3): 122-129. doi: 10.1049/hve.2016.0034 [3] 杨雯捷, 王勐, 李逢, 等. 软X射线辐照对绝缘材料沿面闪络性能的影响[J]. 强激光与粒子束, 2015, 27:095002. (Yang Wenjie, Wang Meng, Li Feng, et al. Impact of soft X-ray irradiation on surface flashover performance of insulating material[J]. High Power Laser and Particle Beams, 2015, 27: 095002 doi: 10.11884/HPLPB201527.095002 [4] 谢庆, 刘熊, 吴高林, 等. SF6中环氧树脂纳秒脉冲沿面闪络实验研究[J]. 中国电机工程学报, 2016, 36(24):6727-6735. (Xie Qing, Liu Xiong, Wu Gaolin, et al. Experiment study of surface flashover on epoxy resin discharged by nanosecond pulses in SF6[J]. Proceedings of the CSEE, 2016, 36(24): 6727-6735 [5] 齐波, 高春嘉, 赵林杰, 等. 交/直流电压下气体绝缘变电站盆式绝缘子表面电荷对闪络电压的影响[J]. 高电压技术, 2017, 43(3):915-922. (Qi Bo, Gao Chunjia, Zhao Linjie, et al. Influence of surface charge on flashover voltage of gas insulated substation basin insulator under AC and DC voltage[J]. High Voltage Engineering, 2017, 43(3): 915-922 [6] 柯昌凤, 刘文元, 段荔, 等. 表面改性对绝缘子真空沿面闪络特性的影响[J]. 强激光与粒子束, 2014, 26:065010. (Ke Changfeng, Liu Wenyuan, Duan Li, et al. Influence of surface modification on vacuum flashover performance of insulators[J]. High Power Laser and Particle Beams, 2014, 26: 065010 doi: 10.11884/HPLPB201426.065010 [7] 章程, 邵涛, 严萍. 纳秒脉冲介质阻挡放电在聚合物绝缘材料表面改性中的应用[J]. 绝缘材料, 2014, 47(2):1-7. (Zhang Cheng, Shao Tao, Yan Ping. Application of nanosecond pulse dielectric barrier discharge in surface modification of polymer insulating materials[J]. Insulating Materials, 2014, 47(2): 1-7 doi: 10.3969/j.issn.1009-9239.2014.02.001 [8] 冉昭玉, 杜伯学, 李进, 等. 输电管道中环氧树脂绝缘子氟化改性研究现状[J]. 广东电力, 2018, 31(8):18-26. (Ran Zhaoyu, Du Boxue, Li Jin, et al. Research status of fluorination modification of epoxy resin insulators in transmission pipelines[J]. Guangdong Electric Power, 2018, 31(8): 18-26 [9] 郭跃文, 刘文元, 霍艳坤, 等. 表面喷砂对有机玻璃沿面闪络性能影响[J]. 强激光与粒子束, 2020, 32:065002. (Guo Yuewen, Liu Wenyuan, Huo Yankun, et al. Influence of surface sand blasting treatment on vacuum surface flashover characteristics of PMMA insulator[J]. High Power Laser and Particle Beams, 2020, 32: 065002 [10] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358 [11] 江汇, 余德平, 吕程, 等. 层流等离子体制备球形氧化铝粉末的实验研究[J]. 强激光与粒子束, 2018, 30:079002. (Jiang Hui, Yu Deping, Lü Cheng, et al. Experimental study on preparation of spherical alumina powder by laminar plasma jet[J]. High Power Laser and Particle Beams, 2018, 30: 079002 doi: 10.11884/HPLPB201830.170500 [12] Huang Bangdou, Zhang Cheng, Adamovich I, et al. Surface ionization wave propagation in the nanosecond pulsed surface dielectric barrier discharge: the influence of dielectric material and pulse repetition rate[J]. Plasma Sources Science and Technology, 2020, 29: 044001. doi: 10.1088/1361-6595/ab7854 [13] Huang Bangdou, Zhang Cheng, Zhu Wenchao, et al. Ionization waves in nanosecond pulsed atmospheric pressure plasma jets in argon[J]. High Voltage, 2021. doi: 10.1049/hve2.12067 [14] 林浩凡, 王瑞雪, 谢庆, 等. 等离子体射流快速改性促进表面电荷衰减[J]. 电工技术学报, 2017, 32(16):256-264. (Lin Haofan, Wang Ruixue, Xie Qing, et al. Rapid surface modification by plasma jet to promote surface charge decaying[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 256-264 [15] Shao Tao, Zhou Yixiao, Zhang Cheng, et al. Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1747-1754. doi: 10.1109/TDEI.2015.7116373 [16] Shao Tao, Yang Wenjin, Zhang Cheng, et al. Enhanced surface flashover strength in vacuum of polymethylmethacrylate by surface modification using atmospheric-pressure dielectric barrier discharge[J]. Applied Physics Letters, 2014, 105: 071607. doi: 10.1063/1.4893884 [17] 海彬, 章程, 王瑞雪, 等. 等离子体沉积类SiO2薄膜抑制环氧树脂表面电荷积聚[J]. 高电压技术, 2017, 43(2):375-384. (Hai Bin, Zhang Cheng, Wang Ruixue, et al. Plasma depositing SiO2-like film to suppress surface charge accumulation on epoxy resin[J]. High Voltage Engineering, 2017, 43(2): 375-384 [18] Ishikawa S, Yukimura K, Matsunaga K, et al. The surface modification of poly(tetrafluoroethylene) film using dielectric barrier discharge of intermittent pulse voltage[J]. Surface and Coatings Technology, 2000, 130(1): 52-56. doi: 10.1016/S0257-8972(00)00688-5 [19] Chen Weimin, Zhou Xiaoyan, Zhang Xiaotao, et al. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma[J]. Applied Surface Science, 2017, 407: 412-417. doi: 10.1016/j.apsusc.2017.02.048 [20] 李至仁, 刘禹佳, 胡蕊, 等. 等离子体处理工艺对聚乙烯木塑复合材料表面时效性的影响[J]. 化学与粘合, 2015, 37(5):325-328. (Li Zhiren, Liu Yujia, Hu Rui, et al. The effect of plasma treatment on the surface aging of polyethylene wood plastics composites[J]. Chemistry and Adhesion, 2015, 37(5): 325-328 [21] 刘杨, 邸明伟. 聚合物等离子体表面改性时效性的研究进展[J]. 粘接, 2011, 32(3):79-83. (Liu Yang, Di Mingwei. Research progress of ageing effect of plasma surface modification for polymer materials[J]. Adhesion in China, 2011, 32(3): 79-83 doi: 10.3969/j.issn.1001-5922.2011.03.018 [22] Abenojar J, Torregrosa-Coque R, Martínez Miguel A, et al. Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma[J]. Surface and Coatings Technology, 2009, 203(16): 2173-2180. doi: 10.1016/j.surfcoat.2009.01.037 [23] 王静, 孟伶智, 任航, 等. 等离子体处理的时效性对芳Ⅲ/双马复合材料耐湿热性能的影响[J]. 装备环境工程, 2018, 15(2):41-44. (Wang Jing, Meng Lingzhi, Ren Hang, et al. Effects of plasma aging behaviour on damp heat resistance of aramid fiber Ⅲ/BMI composite[J]. Equipment Environmental Engineering, 2018, 15(2): 41-44 [24] Zhang Cheng, Ma Yiyang, Kong Fei, et al. Atmospheric pressure plasmas and direct fluorination treatment of Al2O3-filled epoxy resin: A comparison of surface charge dissipation[J]. Surface and Coatings Technology, 2019, 362: 1-11. doi: 10.1016/j.surfcoat.2019.01.081 [25] 马翊洋, 章程, 孔飞, 等. 次大气压介质阻挡放电处理环氧树脂对表面电荷消散的影响及老化特性[J]. 电工技术学报, 2018, 33(22):5168-5177. (Ma Yiyang, Zhang Cheng, Kong Fei, et al. Surface treatment of epoxy resin by sub-atmospheric-pressure dielectric barrier discharge: the effect on surface charge dissipation and aging characteristics[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5168-5177 [26] Luner P E, Oh E. Characterization of the surface free energy of cellulose ether films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181(1/3): 31-48. [27] Morent R, De Geyter N, Leys C, et al. Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure[J]. Surface and Coatings Technology, 2007, 201(18): 7847-7854. doi: 10.1016/j.surfcoat.2007.03.018 [28] Tursi A, De Vietro N, Beneduci A, et al. Low pressure plasma functionalized cellulose fiber for the remediation of petroleum hydrocarbons polluted water[J]. Journal of Hazardous Materials, 2019, 373: 773-782. doi: 10.1016/j.jhazmat.2019.04.022 [29] 高文强, 张博雅, 张贵新. 硅橡胶材料表面电荷消散现象[J]. 高电压技术, 2017, 43(2):468-475. (Gao Wenqiang, Zhang Boya, Zhang Guixin. Surface charge decay on silicone rubber materia[J]. High Voltage Engineering, 2017, 43(2): 468-475 [30] Que Longkai, An Zhenlian, Ma Yong, et al. Improved DC flashover performance of epoxy insulators in SF6 gas by direct fluorination[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 1153-1161. doi: 10.1109/TDEI.2017.006112 [31] Li Jianying, Zhou Fusheng, Min Daomin, et al. The energy distribution of trapped charges in polymers based on isothermal surface potential decay model[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1723-1732. doi: 10.1109/TDEI.2015.7116370 [32] 詹振宇, 阮浩鸥, 律方成, 等. 等离子体氟化改性环氧树脂及其在C4F7N/CO2混合气体中电气性能研究[J]. 电工技术学报, 2020, 35(8):1787-1798. (Zhan Zhenyu, Ruan Haoou, Lü Fangcheng, et al. Plasma fluorinated epoxy resin and its insulation properties in C4F7N/CO2 mixed gas[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1787-1798 [33] 张贵新, 张博雅, 王强, 等. 高压直流GIL中盆式绝缘子表面电荷积聚与消散的实验研究[J]. 高电压技术, 2015, 41(5):1430-1436. (Zhang Guixin, Zhang Boya, Wang Qiang, et al. Experiment study of surface charge accumulation and decay on a cone-type insulator in HVDC GIL[J]. High Voltage Engineering, 2015, 41(5): 1430-1436 [34] 律方成, 刘春博, 詹振宇, 等. 等离子体氟化纳米SiC/环氧复合涂层对环氧树脂闪络特性的影响[J]. 高电压技术, 2020, 46(7):2444-2452. (Lü Fangcheng, Liu Chunbo, Zhan Zhenyu, et al. Effect of plasma fluorinated nano-SiC/epoxy composite coating on the flashover characteristics of epoxy resin[J]. High Voltage Engineering, 2020, 46(7): 2444-2452 [35] Shen Wenwei, Mu Haibao, Zhang Guanjun, et al. Identification of electron and hole trap based on isothermal surface potential decay model[J]. Journal of Applied Physics, 2013, 113: 083706. doi: 10.1063/1.4792491 [36] 刘畅, 宋法伦, 朱明冬, 等. 氮离子注入对聚四氟乙烯表面电荷积聚和消散特性的影响[J]. 强激光与粒子束, 2020, 32:075001. (Liu Chang, Song Falun, Zhu Mingdong, et al. Influence of nitrogen ion implantation on surface charge accumulation and dissipation of polytetrafluoroethylene[J]. High Power Laser and Particle Beams, 2020, 32: 075001 [37] Simmons J G, Tam M C. Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions[J]. Physical Review B, 1973, 7(8): 3706-3713. doi: 10.1103/PhysRevB.7.3706