Effect of plasma surface gradient silicon deposition on the electrical properties of epoxy resin
-
摘要: 环氧树脂作为常见的绝缘材料,在高压直流电场作用下易在其表面积累电荷,发生电场畸变,导致材料绝缘性能下降,影响电力系统运行可靠性。为改善气固界面的电荷特性和绝缘性能,在大气压等离子体射流技术的基础上,对环氧树脂表面进行等离子体梯度硅沉积处理。对改性前后环氧树脂表面理化特性、表面电导率、表面电荷消散和沿面耐压特性进行了多参数测量。实验结果表明,梯度改性对材料表面的物理形貌和化学组分均有明显影响,不同区域的电导率实现了梯度分布,加快了表面电荷消散速度,表面陷阱能级变浅;梯度改性后的样品沿面闪络电压提升幅度可达30.16%。通过等离子体表面梯度硅沉积处理能够改善环氧树脂表面电气性能,在高压直流设备的绝缘设计方面具有广阔的应用前景。Abstract: As a common insulating material, epoxy resin under high-voltage direct current electric field is prone to accumulate charges on its surface, causing electric field distortion, resulting in a decrease in the insulation performance of the material and affecting the reliability of the power system. To improve the charge characteristics and insulation properties of the gas-solid interface, based on the atmospheric pressure plasma jet technology, plasma gradient silicon deposition were conducted on the epoxy resin surface. The surface physical and chemical properties, surface conductivity, surface charge dissipation and creeping pressure characteristics of epoxy resin before and after modification were measured by multiple parameters. The experimental results show that the gradient modification has a significant effect on the physical morphology and chemical composition of the material surface. The conductivity of different regions has achieved a gradient distribution, which speeds up the dissipation of surface charges and reduces the surface trap energy level; The flashover voltage of the subsequent samples can increase by 30.16% along the surface. In summary, the plasma surface gradient silicon deposition treatment can improve the electrical properties of the epoxy resin surface, and has broad application prospects in the insulation design of high-voltage DC equipment.
-
Key words:
- plasma /
- gradient modification /
- silicon deposition /
- epoxy resin /
- surface conductivity /
- surface flashover
-
表 1 不同处理时长样片表面的粗糙度
Table 1. Surface roughness of the sample with different processing time
processing time/min surface roughness Ra/nm 0 1092.03 1 968.26 2 902.75 3 858.84 4 810.17 表 2 不同处理区域Si,C,O,Al元素含量变化
Table 2. Contents of Si, C, O and Al in different treatment areas
element content/% 0 min 1 min 2 min 3 min 4 min Si 5.06 10.60 12.47 18.34 21.95 C 64.45 62.89 57.40 42.51 36.18 O 20.20 26.27 29.92 38.95 41.68 Al 0.29 0.24 0.21 0.20 0.19 表 3 不同等离子体硅沉积处理时长EP表面电导率
Table 3. Surface conductivity of EP at different plasma silicon deposition time
modification time/min surface conductivity/S 0 6.31E-17 1 5.59E-16 2 1.12E-16 3 7.83E-15 4 2.16E-15 -
[1] Li Chuanyang, He Jinliang, Hu Jun. Surface morphology and electrical characteristics of direct fluorinated epoxy-resin/alumina composite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 3071-3077. doi: 10.1109/TDEI.2016.7736871 [2] Li Chuanyang, Hu Jun, Lin Chuanjie, et al. Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators[J]. Journal of Physics D: Applied Physics, 2017, 50: 065301. doi: 10.1088/1361-6463/aa5207 [3] 周中升, 邵涛, 章程, 等. 变压器油中绝缘介质沿面闪络的研究进展[J]. 绝缘材料, 2014, 47(4):1-5, 11. (Zhou Zhongsheng, Shao Tao, Zhang Cheng, et al. Research progress in surface flashover of insulation dielectric in transformer oil[J]. Insulating Materials, 2014, 47(4): 1-5, 11 doi: 10.3969/j.issn.1009-9239.2014.04.001 [4] 王瑞雪, 海彬, 田思理, 等. 绝缘材料表面电荷测量优化及等离子体处理对其表面电特性的影响[J]. 高电压技术, 2017, 43(6):1808-1815. (Wang Ruixue, Hai Bin, Tian Sili, et al. Optimization of dielectric material surface charge measurement and impact of plasma treatment on their surface electrical characteristics[J]. High Voltage Engineering, 2017, 43(6): 1808-1815 [5] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358 [6] ShaoTao, Wang Ruixue, Zhang Cheng, et al. Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications[J]. High Voltage, 2018, 3(1): 14-20. doi: 10.1049/hve.2016.0014 [7] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705 [8] 章程, 顾建伟, 邵涛, 等. 大气压空气中重复频率纳秒脉冲气体放电模式研究[J]. 强激光与粒子束, 2014, 26:045029. (Zhang Cheng, Gu Jianwei, Shao Tao, et al. Discharge mode in the repetitive nanosecond-pulse discharge in atmospheric pressure air[J]. High Power Laser and Particle Beams, 2014, 26: 045029 doi: 10.11884/HPLPB201426.045029 [9] 沈苑, 王瑞雪, 章程, 等. 微秒脉冲激励的大气压氦等离子体射流放电特性[J]. 强激光与粒子束, 2016, 28(5):055001. (Shen Yuan, Wang Ruixue, Zhang Cheng, et al. Characterization of atmospheric pressure helium plasma jet driven by microsecond pulse[J]. High Power Laser and Particle Beams, 2016, 28(5): 055001 doi: 10.11884/HPLPB201628.055001 [10] 周亦骁, 邵涛, 章程, 等. 微秒脉冲大气压氦气等离子体射流阵列特性[J]. 强激光与粒子束, 2014, 26(4):045003. (Zhou Yixiao, Shao Tao, Zhang Cheng, et al. Atmospheric pressure plasma jet array in helium driven by microsecond pulses[J]. High Power Laser and Particle Beams, 2014, 26(4): 045003 doi: 10.11884/HPLPB201426.045003 [11] Shao Tao, Zhou Yixiao, Zhang Cheng, et al. Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1747-1754. doi: 10.1109/TDEI.2015.7116373 [12] Chen Sile, Wang Shuai, Wang Yibo, et al. Surface modification of epoxy Resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum[J]. Applied Surface Science, 2017, 414: 107-113. doi: 10.1016/j.apsusc.2017.03.278 [13] Xie Qing, Lin Haofan, Zhang Shuai, et al. Deposition of SiCxHyOz thin film on epoxy resin by nanosecond pulsed APPJ for improving the surface insulating performance[J]. Plasma Science and Technology, 2017, 20: 025504. [14] 林浩凡, 王瑞雪, 谢庆, 等. 等离子体射流快速改性促进表面电荷衰减[J]. 电工技术学报, 2017, 32(16):256-264. (Lin Haofan, Wang Ruixue, Xie Qing, et al. Rapid surface modification by plasma jet to promote surface charge decaying[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 256-264 [15] Kakiuchi H, Higashida K, Shibata T, et al. High-rate HMDSO-based coatings in open air using atmospheric-pressure plasma jet[J]. Journal of Non-Crystalline Solids, 2012, 358(17): 2462-2465. doi: 10.1016/j.jnoncrysol.2011.12.081 [16] 李进, 王泽华, 陈允, 等. 高压气体绝缘输电设备用功能梯度材料研究进展[J]. 高电压技术, 2020, 46(7):2471-2477. (Li Jin, Wang Zehua, Chen Yun, et al. Research progress on functionally graded materials for high voltage gas insulated transmission apparatus[J]. High Voltage Engineering, 2020, 46(7): 2471-2477 [17] Li Nan, Tian Jihuan, Deng Wei, et al. Application of functionally graded materials for solid insulator: fabrication, optimization design, and surface flashover of prototype samples[J]. Applied Mechanics and Materials, 2013, 291/294: 2308-2312. doi: 10.4028/www.scientific.net/AMM.291-294.2308 [18] Hayakawa N, Ishiguro J, Kojima H, et al. Fabrication and simulation of permittivity graded materials for electric field grading of gas insulated power apparatus[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 547-554. doi: 10.1109/TDEI.2015.005237 [19] Liu Zhe, Li Wendong, Wang Yibo, et al. Topology optimization and 3D-printing fabrication feasibility of high voltage FGM insulator[C]//Proceedings of 2016 IEEE International Conference on High Voltage Engineering and Application. Chengdu, China: IEEE, 2016: 1-4. [20] Ochiai K, Izu A, Oishi R, et al. Fabrication of permittivity graded materials (ε-FGM) by flexible mixture casting method[C]∥Proceedings of 2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Cancun, Mexico: IEEE, 2018: 578-581. [21] Du Boxue, Wang Zehua, Li Jin, et al. Surface FGM insulator based on BaTiO3 magnetron sputtering for electric field grading of AC gas insulated power apparatus[J]. IEEE Access, 2019, 7: 62681-62688. doi: 10.1109/ACCESS.2019.2916888 [22] Li Jin, Liang Hucheng, Du Boxue, et al. Surface functional graded spacer for compact HVDC gaseous insulated system[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 664-667. doi: 10.1109/TDEI.2018.007708 [23] Du Boxue, Ran Zhaoyu, Li Jin, et al. Novel insulator with interfacial σ-FGM for DC compact gaseous insulated pipeline[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 818-825. doi: 10.1109/TDEI.2019.8726029 [24] Xie Qing, Ruan Haoou, Xie Jun, et al. Nano-modification for enhancing the DC surface insulation strength of epoxy resin[M]//Du Boxue. Polymer Insulation Applied for HVDC Transmission. Singapore: Springer, 2021. [25] Tumiran, Maeyama M, Imada H, et al. Flashover from surface charge distribution on alumina insulators in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 4(4): 400-406. doi: 10.1109/94.625355 [26] Shen Weiwei, Mu Haibao, Zhang Guanjun, et al. Identification of electron and hole trap based on isothermal surface potential decay model[J]. Journal of Applied Physics, 2013, 113: 083706. doi: 10.1063/1.4792491 [27] 高宇, 李莹, 崔劲达, 等. 伽玛线辐射对环氧树脂表面陷阱分布的影响[J]. 电工技术学报, 2012, 27(12):264-269. (Gao Yu, Li Ying, Cui Jinda, et al. Effect of gamma-ray irradiation on surface trap distribution of epoxy resin[J]. Transactions of China Electrotechnical Society, 2012, 27(12): 264-269 [28] Zhang Boya, Zhang Guixin, Wang Qiang, et al. Suppression of surface charge accumulation on Al2O3-filled epoxy resin insulator under DC voltage by direct fluorination[J]. AIP Advances, 2015, 5: 127207. doi: 10.1063/1.4937626 [29] Li Shengtao, Huang Qifeng, Sun Jian, et al. Effect of traps on surface flashover of XLPE in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 964-970. doi: 10.1109/TDEI.2010.5492273