留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体表面梯度硅沉积对环氧树脂电气性能的影响

彭程凯 闫纪源 康玉婵 宋岩泽 张亚辉 马国爽 万子剑 谢庆

彭程凯, 闫纪源, 康玉婵, 等. 等离子体表面梯度硅沉积对环氧树脂电气性能的影响[J]. 强激光与粒子束, 2021, 33: 065018. doi: 10.11884/HPLPB202133.210106
引用本文: 彭程凯, 闫纪源, 康玉婵, 等. 等离子体表面梯度硅沉积对环氧树脂电气性能的影响[J]. 强激光与粒子束, 2021, 33: 065018. doi: 10.11884/HPLPB202133.210106
Peng Chengkai, Yan Jiyuan, Kang Yuchan, et al. Effect of plasma surface gradient silicon deposition on the electrical properties of epoxy resin[J]. High Power Laser and Particle Beams, 2021, 33: 065018. doi: 10.11884/HPLPB202133.210106
Citation: Peng Chengkai, Yan Jiyuan, Kang Yuchan, et al. Effect of plasma surface gradient silicon deposition on the electrical properties of epoxy resin[J]. High Power Laser and Particle Beams, 2021, 33: 065018. doi: 10.11884/HPLPB202133.210106

等离子体表面梯度硅沉积对环氧树脂电气性能的影响

doi: 10.11884/HPLPB202133.210106
基金项目: 国家自然科学基金项目(51777076);中央高校基本科研业务费专项资金项目(2019MS083);新能源电力系统国家重点实验室项目(LAPS2019-21)
详细信息
    作者简介:

    彭程凯(1996—),男,硕士研究生,从事高电压与绝缘技术相关研究;

    通讯作者:

    谢 庆(1979—),男,教授,博士,从事等离子体、高电压与绝缘技术相关研究;

  • 中图分类号: O53

Effect of plasma surface gradient silicon deposition on the electrical properties of epoxy resin

  • 摘要: 环氧树脂作为常见的绝缘材料,在高压直流电场作用下易在其表面积累电荷,发生电场畸变,导致材料绝缘性能下降,影响电力系统运行可靠性。为改善气固界面的电荷特性和绝缘性能,在大气压等离子体射流技术的基础上,对环氧树脂表面进行等离子体梯度硅沉积处理。对改性前后环氧树脂表面理化特性、表面电导率、表面电荷消散和沿面耐压特性进行了多参数测量。实验结果表明,梯度改性对材料表面的物理形貌和化学组分均有明显影响,不同区域的电导率实现了梯度分布,加快了表面电荷消散速度,表面陷阱能级变浅;梯度改性后的样品沿面闪络电压提升幅度可达30.16%。通过等离子体表面梯度硅沉积处理能够改善环氧树脂表面电气性能,在高压直流设备的绝缘设计方面具有广阔的应用前景。
  • 图  1  样品制备流程图

    Figure  1.  Flow chart of sample preparation

    图  2  APPJ表面梯度改性实验平台示意图

    Figure  2.  APPJ schematic diagram of surface gradient modification experimental platform

    图  3  样品表面梯度分区图

    Figure  3.  Surface gradient distribution along the sample

    图  4  梯度硅沉积改性环氧树脂样片实物图

    Figure  4.  Photoes of epoxy resin sample modified by gradient silicon deposition

    图  5  沿面闪络测试电极

    Figure  5.  Surface flashover test electrode

    图  6  表面电位测试平台

    Figure  6.  Surface potential test platform

    图  7  不同处理时长的样片表面形貌变化图

    Figure  7.  Surface morphologies of samples with different modification time

    图  8  不同改性区域环氧树脂表面SEM图

    Figure  8.  SEM images of epoxy resin surface of different modification areas

    图  9  不同改性时间环氧树脂表面XPS谱图

    Figure  9.  XPS full scan of epoxy resin surface of different modification areas

    图  10  环氧树脂表面不同区域电位归一化消散曲线

    Figure  10.  Charge decay curves of different regions on the surface of epoxy resin

    图  11  环氧树脂表面不同区域的陷阱能级分布

    Figure  11.  Energy level distribution of traps in different regions on the surface of epoxy resin

    图  12  样品沿面闪络电压的威布尔分布

    Figure  12.  Weibull distribution of sample surface flashover voltage

    表  1  不同处理时长样片表面的粗糙度

    Table  1.   Surface roughness of the sample with different processing time

    processing time/minsurface roughness Ra/nm
    01092.03
    1968.26
    2902.75
    3858.84
    4810.17
    下载: 导出CSV

    表  2  不同处理区域Si,C,O,Al元素含量变化

    Table  2.   Contents of Si, C, O and Al in different treatment areas

    elementcontent/%
    0 min1 min2 min3 min4 min
    Si 5.06 10.60 12.47 18.34 21.95
    C 64.45 62.89 57.40 42.51 36.18
    O 20.20 26.27 29.92 38.95 41.68
    Al 0.29 0.24 0.21 0.20 0.19
    下载: 导出CSV

    表  3  不同等离子体硅沉积处理时长EP表面电导率

    Table  3.   Surface conductivity of EP at different plasma silicon deposition time

    modification time/minsurface conductivity/S
    0 6.31E-17
    1 5.59E-16
    2 1.12E-16
    3 7.83E-15
    4 2.16E-15
    下载: 导出CSV
  • [1] Li Chuanyang, He Jinliang, Hu Jun. Surface morphology and electrical characteristics of direct fluorinated epoxy-resin/alumina composite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 3071-3077. doi: 10.1109/TDEI.2016.7736871
    [2] Li Chuanyang, Hu Jun, Lin Chuanjie, et al. Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators[J]. Journal of Physics D: Applied Physics, 2017, 50: 065301. doi: 10.1088/1361-6463/aa5207
    [3] 周中升, 邵涛, 章程, 等. 变压器油中绝缘介质沿面闪络的研究进展[J]. 绝缘材料, 2014, 47(4):1-5, 11. (Zhou Zhongsheng, Shao Tao, Zhang Cheng, et al. Research progress in surface flashover of insulation dielectric in transformer oil[J]. Insulating Materials, 2014, 47(4): 1-5, 11 doi: 10.3969/j.issn.1009-9239.2014.04.001
    [4] 王瑞雪, 海彬, 田思理, 等. 绝缘材料表面电荷测量优化及等离子体处理对其表面电特性的影响[J]. 高电压技术, 2017, 43(6):1808-1815. (Wang Ruixue, Hai Bin, Tian Sili, et al. Optimization of dielectric material surface charge measurement and impact of plasma treatment on their surface electrical characteristics[J]. High Voltage Engineering, 2017, 43(6): 1808-1815
    [5] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [6] ShaoTao, Wang Ruixue, Zhang Cheng, et al. Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications[J]. High Voltage, 2018, 3(1): 14-20. doi: 10.1049/hve.2016.0014
    [7] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705
    [8] 章程, 顾建伟, 邵涛, 等. 大气压空气中重复频率纳秒脉冲气体放电模式研究[J]. 强激光与粒子束, 2014, 26:045029. (Zhang Cheng, Gu Jianwei, Shao Tao, et al. Discharge mode in the repetitive nanosecond-pulse discharge in atmospheric pressure air[J]. High Power Laser and Particle Beams, 2014, 26: 045029 doi: 10.11884/HPLPB201426.045029
    [9] 沈苑, 王瑞雪, 章程, 等. 微秒脉冲激励的大气压氦等离子体射流放电特性[J]. 强激光与粒子束, 2016, 28(5):055001. (Shen Yuan, Wang Ruixue, Zhang Cheng, et al. Characterization of atmospheric pressure helium plasma jet driven by microsecond pulse[J]. High Power Laser and Particle Beams, 2016, 28(5): 055001 doi: 10.11884/HPLPB201628.055001
    [10] 周亦骁, 邵涛, 章程, 等. 微秒脉冲大气压氦气等离子体射流阵列特性[J]. 强激光与粒子束, 2014, 26(4):045003. (Zhou Yixiao, Shao Tao, Zhang Cheng, et al. Atmospheric pressure plasma jet array in helium driven by microsecond pulses[J]. High Power Laser and Particle Beams, 2014, 26(4): 045003 doi: 10.11884/HPLPB201426.045003
    [11] Shao Tao, Zhou Yixiao, Zhang Cheng, et al. Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1747-1754. doi: 10.1109/TDEI.2015.7116373
    [12] Chen Sile, Wang Shuai, Wang Yibo, et al. Surface modification of epoxy Resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum[J]. Applied Surface Science, 2017, 414: 107-113. doi: 10.1016/j.apsusc.2017.03.278
    [13] Xie Qing, Lin Haofan, Zhang Shuai, et al. Deposition of SiCxHyOz thin film on epoxy resin by nanosecond pulsed APPJ for improving the surface insulating performance[J]. Plasma Science and Technology, 2017, 20: 025504.
    [14] 林浩凡, 王瑞雪, 谢庆, 等. 等离子体射流快速改性促进表面电荷衰减[J]. 电工技术学报, 2017, 32(16):256-264. (Lin Haofan, Wang Ruixue, Xie Qing, et al. Rapid surface modification by plasma jet to promote surface charge decaying[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 256-264
    [15] Kakiuchi H, Higashida K, Shibata T, et al. High-rate HMDSO-based coatings in open air using atmospheric-pressure plasma jet[J]. Journal of Non-Crystalline Solids, 2012, 358(17): 2462-2465. doi: 10.1016/j.jnoncrysol.2011.12.081
    [16] 李进, 王泽华, 陈允, 等. 高压气体绝缘输电设备用功能梯度材料研究进展[J]. 高电压技术, 2020, 46(7):2471-2477. (Li Jin, Wang Zehua, Chen Yun, et al. Research progress on functionally graded materials for high voltage gas insulated transmission apparatus[J]. High Voltage Engineering, 2020, 46(7): 2471-2477
    [17] Li Nan, Tian Jihuan, Deng Wei, et al. Application of functionally graded materials for solid insulator: fabrication, optimization design, and surface flashover of prototype samples[J]. Applied Mechanics and Materials, 2013, 291/294: 2308-2312. doi: 10.4028/www.scientific.net/AMM.291-294.2308
    [18] Hayakawa N, Ishiguro J, Kojima H, et al. Fabrication and simulation of permittivity graded materials for electric field grading of gas insulated power apparatus[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 547-554. doi: 10.1109/TDEI.2015.005237
    [19] Liu Zhe, Li Wendong, Wang Yibo, et al. Topology optimization and 3D-printing fabrication feasibility of high voltage FGM insulator[C]//Proceedings of 2016 IEEE International Conference on High Voltage Engineering and Application. Chengdu, China: IEEE, 2016: 1-4.
    [20] Ochiai K, Izu A, Oishi R, et al. Fabrication of permittivity graded materials (ε-FGM) by flexible mixture casting method[C]∥Proceedings of 2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Cancun, Mexico: IEEE, 2018: 578-581.
    [21] Du Boxue, Wang Zehua, Li Jin, et al. Surface FGM insulator based on BaTiO3 magnetron sputtering for electric field grading of AC gas insulated power apparatus[J]. IEEE Access, 2019, 7: 62681-62688. doi: 10.1109/ACCESS.2019.2916888
    [22] Li Jin, Liang Hucheng, Du Boxue, et al. Surface functional graded spacer for compact HVDC gaseous insulated system[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 664-667. doi: 10.1109/TDEI.2018.007708
    [23] Du Boxue, Ran Zhaoyu, Li Jin, et al. Novel insulator with interfacial σ-FGM for DC compact gaseous insulated pipeline[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 818-825. doi: 10.1109/TDEI.2019.8726029
    [24] Xie Qing, Ruan Haoou, Xie Jun, et al. Nano-modification for enhancing the DC surface insulation strength of epoxy resin[M]//Du Boxue. Polymer Insulation Applied for HVDC Transmission. Singapore: Springer, 2021.
    [25] Tumiran, Maeyama M, Imada H, et al. Flashover from surface charge distribution on alumina insulators in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 4(4): 400-406. doi: 10.1109/94.625355
    [26] Shen Weiwei, Mu Haibao, Zhang Guanjun, et al. Identification of electron and hole trap based on isothermal surface potential decay model[J]. Journal of Applied Physics, 2013, 113: 083706. doi: 10.1063/1.4792491
    [27] 高宇, 李莹, 崔劲达, 等. 伽玛线辐射对环氧树脂表面陷阱分布的影响[J]. 电工技术学报, 2012, 27(12):264-269. (Gao Yu, Li Ying, Cui Jinda, et al. Effect of gamma-ray irradiation on surface trap distribution of epoxy resin[J]. Transactions of China Electrotechnical Society, 2012, 27(12): 264-269
    [28] Zhang Boya, Zhang Guixin, Wang Qiang, et al. Suppression of surface charge accumulation on Al2O3-filled epoxy resin insulator under DC voltage by direct fluorination[J]. AIP Advances, 2015, 5: 127207. doi: 10.1063/1.4937626
    [29] Li Shengtao, Huang Qifeng, Sun Jian, et al. Effect of traps on surface flashover of XLPE in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 964-970. doi: 10.1109/TDEI.2010.5492273
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  795
  • HTML全文浏览量:  298
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2021-05-01
  • 网络出版日期:  2021-06-01
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回