Compact all-solid-state high frequency LC-Marx generator based on magnetic switch
-
摘要: 通过理论、模拟和实验对提出的全固态LC-Marx发生器进行研究。整个系统由一个MOSFET开关和多个由一个磁芯制成的磁开关控制,该脉冲发生器直径为140 mm,高为17 mm,且随着级数的增加尺寸和重量基本不变。运用谐振充电可以使电容充到源电压的1.82倍,五级LC-Marx发生器用950 V直流电压充电时,在500 Ω电阻上得到峰值电压为10.9 kV、半高宽为400 ns、上升时间为85 ns、效率为30.43%的高压脉冲。输出电压的上升前沿可以根据实际应用的要求,通过减小电容量缩短。该脉冲发生器在频率低于30 kHz下,可以持续稳定地运行。该LC-Marx脉冲发生器在气体放电中将具有较好的应用效果。Abstract: An all-solid-state LC-Marx generator based on magnetic switch has been proposed and analyzed by theory, simulation and experiment. This system is controlled by 1 MOSFET and magnetic switches that are made by 1 magnetic core. It has dimensions of 130 mm (diameter) and 60 mm (height), which almost not change with the stage increase. The capacitors could be charged to 1.82 times source voltage according to the principle of resonant charging. Five-stage LC-Marx generator could obtain a peak output voltage of −10.9 kV with rise time of 80 ns when the source voltage of 950 V is applied, and the energy efficiency is 30.43% on 500 Ω. The generator has been tested under 30 kHz that could work steadily. It could output higher voltage when used for atmospheric discharge.
-
Key words:
- LC-Marx /
- pulsed power generator /
- magnetic switch /
- MOSFET /
- resonant charging /
- all-solid-state /
- high frequency /
- atmospheric discharge
-
图 9 大气条件下放电下的电压波形和电流波形
Figure 9. Voltage and current for the discharge load shown in Fig. 8
表 1 开关及其驱动的主要器件
Table 1. Major components of the switch and the driver
component manufacturer model specifications power MOSFET IXYS DE475-102N21A 1000 V
140 Adriver chip IXYS IXRFD630 8~30 A,30 A optical modules Hitachi DS9300,DR9300 DC~50 Mb/s isolated DC-DC converters Murata NMJ0515SAC,NMJ0515SAC 5 V(in)/15 V(out)
5 V(in)/5 V(out)
1 W
isolation volt: 5 kV -
[1] 江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(1):10-15. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10-15 doi: 10.3788/HPLPB20122401.0010 [2] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 [3] Nunnally W C. Critical component requirements for compact pulse power system architectures[J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1262-1267. doi: 10.1109/TPS.2005.852406 [4] Mankowski J, Kristiansen M. A review of short pulse generator technology[J]. IEEE Transactions on Plasma Science, 2000, 28(1): 102-108. doi: 10.1109/27.842875 [5] Chen Rong, Yang Jianhua, Cheng Xinbing, et al. Developing a solid-state quasi-square pulse Marx generator[J]. Review of Scientific Instruments, 2018, 89: 064707. doi: 10.1063/1.5034200 [6] Achour Y, Starzyński J, Łasica A. New Marx generator architecture with a controllable output based on IGBTs[J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3271-3278. doi: 10.1109/TPS.2017.2766879 [7] 马成刚, 李玺钦, 李亚维, 等. 150 kV快前沿低抖动Marx发生器研制[J]. 强激光与粒子束, 2015, 27:045001. (Ma Chenggang, Li Xiqin, Li Yawei, et al. Development of 150 kV fast risetime low jitter Marx generator[J]. High Power Laser and Particle Beams, 2015, 27: 045001 doi: 10.11884/HPLPB201527.045001 [8] 饶俊峰, 李恩成, 王永刚, 等. 自触发驱动的全固态Marx发生器[J]. 强激光与粒子束, 2021, 33:025001. (Rao Junfeng, Li Encheng, Wang Yonggang, et al. Self-triggering all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 025001 [9] Ren Xiaojing, Sugai T, Tokuchi A, et al. Solid-state Marx generator circuit based on inductive energy storage[J]. IEEE Transactions on Plasma Science, 2021: 1-6. [10] Ma Jianhao, Yu Liang, Sun Wenjie, et al. Investigation and evaluation of solid-state Marx pulse generator based on 3-D busbar[J]. IEEE Transactions on Plasma Science, 2021, 49(5): 1597-1604. doi: 10.1109/TPS.2021.3073489 [11] Bischoff R. An alternative circuitry for a transformer-coupled LC inversion generator[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3424-3428. doi: 10.1109/TPS.2020.3016949 [12] Bischoff R, Brommer V, Stoll M, et al. Fast semiconductor switching modules for transformer-coupled LC inversion generators[J]. IEEE Transactions on Plasma Science, 2017, 45(10): 2618-2622. doi: 10.1109/TPS.2017.2716833 [13] Engel T G, Kaplicki C, Nunnally W C. High-voltage pulse production using transformer-coupled LC vector inversion generators[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1377-1381. doi: 10.1109/27.901201 [14] Fan Xuliang, Liu Jinliang. A compact, all solid-state LC high voltage generator[J]. Review of Scientific Instruments, 2013, 84: 064703. doi: 10.1063/1.4808314 [15] Fan Xuliang, Liu Jinliang. An LC generator based on accurate synchronization controlling of multisecondary windings saturable pulse transformer[J]. IEEE Transactions on Plasma Science, 2014, 42(1): 149-153. doi: 10.1109/TPS.2013.2288116 [16] Jiang Weihua, Sugiyama H, Tokuchi A. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627