Vacuum arc plasma emission spectroscopy diagnosis
-
摘要: 真空断路器的开断容量限制其在高压大电流开断领域的应用,获取燃弧过程中的等离子体参数对于提高真空断路器的开断容量至关重要。利用发射光谱法对真空电弧内的等离子体参数进行了诊断,研究了在不同电流幅值条件下真空电弧内电子温度、电子密度、谱线强度的轴向分布规律,结合真空电弧高速图片对真空电弧内不同粒子的扩散过程与弧柱直径之间的关系进行了分析。得到的电子温度在8000~10 000 K量级,电子密度在1019~1020 m−3量级,电子温度与电子密度从阴极向阳极逐渐下降,同时铜原子谱线强度主要集中在两极而一价铜离子谱线强度由阴极向阳极逐渐升高。铜原子谱线强度的径向分布呈现类平顶波分布、一价铜离子谱线强度的径向分布呈现类高斯分布的特点,且铜原子的谱线范围略大于弧柱直径,一价铜离子的谱线范围略小于弧柱直径,两种粒子的扩散速度存在差异。Abstract: The breaking capacity of vacuum circuit breakers limits its application in the field of high-voltage and high-current breaking. Obtaining plasma parameters in the arcing process is very important for improving the breaking capacity of VCB. The emission spectroscopy is used to diagnose the plasma parameters in the vacuum arc in this paper. The axial distribution of electron temperature, electron density, and spectral line intensity in the vacuum arc under different current amplitude conditions is studied. The relationship between the diffusion process of different particles in the vacuum arc and the diameter of the arc column is analyzed based on the high-speed pictures of the vacuum arc. The electron temperature is 8000−10 000 K, and the electron density is 1019−1020 m−3. The electron temperature and electron density gradually decrease from the cathode to the anode. The intensity of the copper atomic line is mainly concentrated at the two poles, while the intensity of the monovalent copper ion line gradually increases from the cathode to the anode. The radial distribution of the copper atomic line intensity presents a flat-top wave distribution, and the monovalent copper ion line intensity presents a Gaussion-like distribution. The spectral range of copper atoms is slightly larger than the diameter of the arc column, and the spectral range of monovalent copper ions is slightly smaller than the diameter of the arc column. The diffusion speed of the two particles is different.
-
Key words:
- vacuum arc /
- emission spectrum /
- electron temperature /
- electron density /
- specral line intensity
-
表 1 铜原子的特征谱线参数
Table 1. Parameters of characteristic spectral lines of copper atom (Cu I)
wavelength/nm ${E_k }$/cm−1 ${g_k }$ ${A_{ki} }$/(108s−1) 510.6 30783.697 4 0.020 515.4 49935.195 4 0.600 521.9 49942.051 6 0.750 529.4 62403.332 8 0.109 -
[1] 王章启, 邹积岩, 何俊佳, 等. 电力开关技术[M]. 武汉: 华中科技大学出版社, 2003.Wang Zhangqi, Zou Jiyan, He Junjia et al. Power switch technology[M]. Wuhan: Huazhong University of Science & Technology Press, 2003. [2] 李建基. 真空断路器技术的进步[J]. 电器工业, 2001(7):14-15. (Li Jianji. Advances in vacuum circuit breaker technology[J]. Electrical Industry, 2001(7): 14-15 [3] 董攀, 龙继东, 陈德彪, 等. 强流激光离子源中的等离子体参数诊断[J]. 强激光与粒子束, 2016, 28:055103. (Dong Pan, Long Jidong, Chen Debiao, et al. Diagnosis of plasma in high current laser ion source[J]. High Power Laser and Particle Beams, 2016, 28: 055103 doi: 10.11884/HPLPB201628.055103 [4] Khakpour A, Franke S, Methling R, et al. Optical and electrical investigation of transition from anode spot type 1 to anode spot type 2[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2126-2134. doi: 10.1109/TPS.2017.2690572 [5] Methling R, Gorchakov S, Lisnyak M V, et al. Spectroscopic investigation of a Cu—Cr vacuum arc[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2303-2309. doi: 10.1109/TPS.2015.2443856 [6] Lisnyak M, Pipa A V, Gorchakov S, et al. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes[J]. Journal of Applied Physics, 2015, 188: 123304. [7] Khakpour A, Methling R, Franke S, et al. Vapor density and electron density determination during high-current anode phenomena in vacuum arcs[J]. Journal of Applied Physics, 2018, 124: 243301. doi: 10.1063/1.5057753 [8] 王立军, 贾申利, 史宗谦, 等. 开距对不同状态下真空电弧特性影响的仿真分析[J]. 中国电机工程学报, 2008, 28(7):154-160. (Wang Lijun, Jia Shenli, Shi Zongqian, et al. Simulation analysis of influence of electrode separations on vacuum arcs characteristics under different states[J]. Proceedings of the CSEE, 2008, 28(7): 154-160 doi: 10.3321/j.issn:0258-8013.2008.07.025 [9] 王立军, 贾申利, 史宗谦, 等. 电弧电流以及纵向磁场对小电流真空电弧特性影响的数值仿真[J]. 电工技术学报, 2007, 22(1):54-61. (Wang Lijun, Jia Shenli, Shi Zongqian, et al. Numerical simulation of effect of arc current and axial magnetic field on low current vacuum arc characteristics[J]. Transactions of China Electrotechnical Society, 2007, 22(1): 54-61 doi: 10.3321/j.issn:1000-6753.2007.01.010 [10] Wang Haoran, Wang Zhenxing, Liu Jiankun, et al. Optical absorption spectroscopy of metallic (Cr) vapor in a vacuum arc[J]. Journal of Physics D: Applied Physics, 2017, 51: 035203. [11] Gortschakow S, Popov S, Khakpour A, et al. Cu and Cr density determination during high-current discharge modes in vacuum arcs[C]//2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Greifswald: IEEE, 2018: 181-184. [12] Khakpour A, Popov S, Franke S, et al. Determination of Cr density after current zero in a high-current vacuum arc considering anode plume[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2108-2114. doi: 10.1109/TPS.2017.2681898 [13] Wang Zhenxing, Liu Jiankun, Li Yuecheng, et al. Two-dimensional observation of copper atoms after forced extinction of vacuum arcs by laser-induced fluorescence[J]. IEEE Transactions on Plasma Science, 2020, 48(8): 2777-2789. doi: 10.1109/TPS.2020.3008277 [14] Liu Jiankun, Li Yi, Geng Yingsan, et al. Two dimensional distribution of metallic (Cu) vapor in a forced vacuum arc extinction by LIF[C]//2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Greifswald: IEEE, 2018: 403-406. [15] Liu Jiankun, Zha Ziru, Wang Zhenxing, et al. Two dimensional distribution diagnostic of copper vapor in a vacuum arc by laser-induced fluorescence[C]//2019 5th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). Kitakyushu: IEEE, 2019: 144-147. [16] Lins G. Measurement of the neutral copper vapor density around current zero of a 500-A vacuum arc using laser-induced fluorescence[J]. IEEE Transactions on Plasma Science, 1985, 13(6): 577-581. doi: 10.1109/TPS.1985.4316476 [17] Wang Haoran, Liu Ziyuan, Liu Jiankun, et al. Investigation of vacuum arc extinction process by planar laser-induced fluorescence[C]//2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Greifswald: IEEE, 2018: 313-316. [18] Lins G. Collisional transfer and neutral copper vapour density during a diffuse vacuum arc[J]. Journal of Physics D: Applied Physics, 1990, 23: 784. doi: 10.1088/0022-3727/23/7/006 [19] 赵文华, 唐皇哉, 沈岩, 等. 谱线强度法所测得温度的物理意义[J]. 光谱学与光谱分析, 2007, 27(11):2145-2149. (Zhao Wenhua, Tang Huangzai, Shen Yan, et al. Physical meaning of temperature measured by spectral line intensity method[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2145-2149 [20] Griem H R. Plasma spectroscopy[M]. New York: McGraw-Hill, 1964. [21] 陈新坤. 原子发射光谱分析原理[M]. 天津: 天津科学技术出版社, 1991.Chen Xinkun. Principles of atomic emission spectroscopy[M] Tianjin: Tianjin Science and Technology Press, 1991). [22] Khakpour A, Franke S, Gortschakow S, et al. Investigation of anode plume in vacuum arcs using different optical diagnostic methods[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 3488-3495. doi: 10.1109/TPS.2019.2904458