Study on purification of flaky graphite by argon arc plasma torch
-
摘要: 石墨材料作为一种工业原料,特别是纯度在99.9%以上的高纯石墨被应用在各大高科技领域,现有物理法和化学法的石墨提纯技术成本高、酸碱对设备和环境破坏严重、工艺流程复杂,因此开发一种优良有效的石墨提纯技术,已成为近年来国内外研究的热点。建立了一种利用非转移电弧等离子体炬提纯大鳞片石墨的方法,利用电弧可快速产生高温的特性,对黑龙江省鸡西市纯度为94.18%的大鳞片石墨样品进行高温处理。研究显示在本文电弧装置下提纯石墨的最佳放电参数范围气流量为25 L/min、电流为400 A、功率为10 kW,此时的电弧表面温度高达3350 ℃,利用扫描电子显微镜等对电弧处理前后石墨样品的微观结构对比发现石墨样品出现粉碎、断裂等特点,根据石墨化学分析方法国家标准GB/T 3521 2008对石墨纯度及其杂质进行研究分析,经电弧处理后石墨纯度提高到99.21%。Abstract: High purity graphite with purity above 99.9%, as an industrial raw material, plays an important role in the high-tech field. The existing physical and chemical methods of graphite purification technology has high cost serious damage to equipment and environment by acid and alkali, and complex processes. Thus the development of an excellent and effective graphite purification technology has become a research hotspot in recent years at home and abroad. A purification method of flaky graphite by arc plasma is established in this paper. The characteristics of high temperature which can be produced quickly by using arc plasma is used to treat the flaky graphite samples with a purity of 94.18% from Jixi City of Heilongjiang Province, under high temperature. The results show that the optimal discharge parameters are air flow rate 25 L/min, current 400 A and power 10 kW. At this point, the surface temperature of the arc plasma is up to 3350 ℃. Scanning electron microscope is used to compare the microstructure of graphite samples before and after arc processing to find the characteristics of shredding and breaking of graphite samples. The graphite purity and impurities are analysed according to national standard chemical analysis method of GB/T 3521 2008. After arc treatment, the purity of graphite is increased to 99.21%.
-
表 1 鸡西大鳞片石墨主要元素及质量分数
Table 1. Composition and mass fraction of main elements of flaky graphite from Jixi city
element mass fraction/% melting point/℃ boiling point/℃ C 94.18 3850 4830 Si 1.12 1723 2230 Al 0.27 2045 2980 Fe 0.17 1565 3414 S 0.06 112 444 Ca 0.05 2572 2850 Mg 0.004 2800 3600 表 2 电弧等离子体炬放电参数表
Table 2. Discharge parameters of arc plasma
current/A power/kW flow rate/(nL·min−1) voltage/V 200~500 2.4~18.0 10~30 20~30 表 3 处理前后石墨主要元素及质量分数
Table 3. Changes of composition and proportion of the main elements of graphite before and after purification
element mass fraction before process/% mass fraction after process/% C 94.18 99.21 Si 1.12 0.52 Al 0.27 0.07 Fe 0.17 0.17 S 0.06 0.001 Ca 0.05 0.003 Mg 0.004 0.001 -
[1] 李箫波, 魏文赋, 左浩梓, 等. 基于Mo2C晶粒增强的铜/石墨复合材料浸渗特性与优化[J/OL]. 中国电机工程学报, (2021-04-19)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.tm.20210416.1514.004.html.Li Xiaobo, Wei Wenfu, Zuo Haozi, et al. Infiltration characteristics and optimization of copper/graphite composite reinforced by Mo2C grain[J/OL]. Proceedings of the CSEE, (2021-04-19)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.tm.20210416.1514.004.html [2] 张谦, 文书明, 丰奇成, 等. 鳞片石墨的提纯工艺研究现状与展望[J]. 硅酸盐通报, 2019, 38(2):392-397. (Zhang Qian, Wen Shuming, Feng Qicheng, et al. Research status and prospect of flake graphite purification technology[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 392-397 [3] Wang Yukun, Gao Shutao, Zang Xiaohuan, et al. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples[J]. Analytica Chimica Acta, 2012, 716: 112-118. doi: 10.1016/j.aca.2011.12.007 [4] 袁来敏. 辽宁某鳞片石墨矿浮选工艺试验[J]. 现代矿业, 2013, 29(6):94-96. (Yuan Laimin. The process testing of floatation process of a scale graphite mine in Liaoning province[J]. Modern Mining, 2013, 29(6): 94-96 doi: 10.3969/j.issn.1674-6082.2013.06.033 [5] Li Yufeng, Zhu Shifu, Wang Lei. Purification of natural graphite by microwave assisted acid leaching[J]. Carbon, 2013, 55: 377-378. [6] 赵越, 刘敬党, 张艳飞, 等. 湖南某地隐晶质石墨提纯试验研究[J]. 非金属矿, 2017, 40(6):66-68. (Zhao Yue, Liu Jingdang, Zhang Yanfei, et al. Study on the refine of aphanitic graphite from Hunan[J]. Non-Metallic Mines, 2017, 40(6): 66-68 doi: 10.3969/j.issn.1000-8098.2017.06.021 [7] Adham K, Bowes G. Natural graphite purification through chlorination in fluidized bed reactor[M]//Davis B. Extraction 2018: the Minerals, Metals & Materials Series. Cham: Springer, 2018: 2505-2512. [8] 张向军, 陈斌, 高欣明. 高温石墨化提纯晶质(鳞片)石墨[J]. 炭素技术, 2001(2):39-40. (Zhang Xiangjun, Chen Bin, Gao Xinming. Depuration of scaly graphites by high temperature graphitization[J]. Carbon Techniques, 2001(2): 39-40 doi: 10.3969/j.issn.1001-3741.2001.02.010 [9] 李元, 郜晶, 朱光远, 等. 液相等离子体技术制备碳纳米材料的进展与趋势[J]. 中国电机工程学报, 2021, 41(8):2909-2919. (Li Yuan, Gao Jing, Zhu Guangyuan, et al. Advances and trends of carbon nanomaterial synthesis by liquid-plasma processing[J]. Proceedings of the CSEE, 2021, 41(8): 2909-2919 [10] 赵莉华, 冀一玮, 尚豪, 等. 正极性直流驱动大气压氦气等离子体射流的传播机制: 氦气-空气混合层的影响[J/OL]. 中国电机工程学报, (2021-04-27)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.TM.20210427.0928.005.html.Zhao Lihua, Ji Yiwei, Shang Hao, et al. Propagation mechanism of a positive DC driven atmospheric pressure helium plasma jet: influences of He-air mixing layer[J/OL]. Proceedings of the CSEE, (2021-04-27)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.TM.20210427.0928.005.html [11] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358 [12] Fedoseeva Y V, Gorodetskiy D V, Makarova A A, et al. Influence of the temperature of molybdenum substrates on the structure of diamond coatings obtained by chemical vapor deposition from a high-speed microwave plasma jet[J]. Journal of Structural Chemistry, 2021, 62(1): 153-162. doi: 10.1134/S0022476621010182 [13] Hsu M, Sweeney M P, Johnson D L. Thermal effects during microwave plasma sintering of ceramics[J]. MRS Online Proceedings Library, 1990, 189(1): 289-301. [14] 古忠涛, 叶高英, 金玉萍. 射频感应等离子体制备球形钛粉的成分分析[J]. 强激光与粒子束, 2012, 24(6):1409-1413. (Gu Zhongtao, Ye Gaoying, Jin Yuping. Chemical compositions of spherical titanium powders prepared by RF induction plasma[J]. High Power Laser and Particle Beams, 2012, 24(6): 1409-1413 doi: 10.3788/HPLPB20122406.1409 [15] Cao Jin, Matsoukas T. Nanoparticles and nanocomposites in RF plasma[J]. MRS Online Proceedings Library, 2000, 635: C4.12. [16] 钟良, 侯力, 古忠涛. 射频感应等离子体制备球形氧化铝的工艺研究[J]. 强激光与粒子束, 2014, 26:089003. (Zhong Liang, Hou Li, Gu Zhongtao. Preparation procedure for spherical alumina by RF induction plasma[J]. High Power Laser and Particle Beams, 2014, 26: 089003 doi: 10.11884/HPLPB201426.089003 [17] Njiki A, Kamgang-Youbi G, Lontsi C D, et al. Gliding arc discharge-assisted biodegradation of crystal violet in solution with Aeromonas hydrophila strain[J]. International Journal of Environmental Science and Technology, 2016, 13(1): 263-274. doi: 10.1007/s13762-015-0867-1 [18] Iya-Sou D, Laminsi S, Cavadias S, et al. Removal of model pollutants in aqueous solution by gliding arc discharge: determination of removal mechanisms. Part I: experimental study[J]. Plasma Chemistry and Plasma Processing, 2013, 33(1): 97-113. doi: 10.1007/s11090-012-9423-7 [19] Mountapmbeme-Kouotou P, Laminsi S, Acayanka E, et al. Degradation of palm oil refinery wastewaters by non-thermal gliding arc discharge at atmospheric pressure[J]. Environmental Monitoring and Assessment, 2013, 185(7): 5789-5800. doi: 10.1007/s10661-012-2984-3 [20] Kaku S M Y. Evaluation of vacuum arc melted-powder metallurgy Al–ZrB2 composite[M]//Lakshminarayanan A, Idapalapati S, Vasudevan M. Advances in Materials and Metallurgy. Singapore: Springer, 2019: 83-90. [21] 王振廷, 孟君晟. 石墨提纯方法及工艺[M]. 哈尔滨: 哈尔滨工业大学出版社, 2018.Wang Zhenting, Meng Junsheng. The method and technology of purifying graphite[M]. Harbin: Harbin Institute of Technology Press, 2018