留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1 MV阳极杆箍缩二极管数值模型实验研究

冯元伟 马勋 屈俊夫 李洪涛

冯元伟, 马勋, 屈俊夫, 等. 1 MV阳极杆箍缩二极管数值模型实验研究[J]. 强激光与粒子束, 2021, 33: 055005. doi: 10.11884/HPLPB202133.210136
引用本文: 冯元伟, 马勋, 屈俊夫, 等. 1 MV阳极杆箍缩二极管数值模型实验研究[J]. 强激光与粒子束, 2021, 33: 055005. doi: 10.11884/HPLPB202133.210136
Feng Yuanwei, Ma Xun, Qu Junfu, et al. Experiment and analysis on mathematical model of 1 MV rod pinch diode[J]. High Power Laser and Particle Beams, 2021, 33: 055005. doi: 10.11884/HPLPB202133.210136
Citation: Feng Yuanwei, Ma Xun, Qu Junfu, et al. Experiment and analysis on mathematical model of 1 MV rod pinch diode[J]. High Power Laser and Particle Beams, 2021, 33: 055005. doi: 10.11884/HPLPB202133.210136

1 MV阳极杆箍缩二极管数值模型实验研究

doi: 10.11884/HPLPB202133.210136
基金项目: 军科委基础加强计划技术领域基金项目(2019-JCJQ-JJ-422)
详细信息
    作者简介:

    冯元伟(1984—),男,硕士,工程师,研究方向为脉冲功率技术及其应用

    通讯作者:

    李洪涛(1968—),男,博士,研究员,研究方向为脉冲功率技术及其应用

  • 中图分类号: TM836

Experiment and analysis on mathematical model of 1 MV rod pinch diode

  • 摘要: 阳极杆箍缩二极管(RPD)具有小焦斑、高亮度的特点,是闪光X光机领域的研究热点。基于Marx发生器和脉冲形成线技术路线产生1 MV高电压脉冲驱动RPD,开展了不同结构参数二极管实验研究。基于RPD物理过程的数值模型,分析了结构参数对箍缩物理过程的影响。研究表明在1 MV电压下,RPD阴极等离子体平均扩散速度、阳极等离子体平均扩散速度分别为2,0.6 cm/μs时,该模型可以较好地描述实验结果。在阳极杆直径一定的情况下,二极管数值模型表明减小阴极孔径可以使二极管更快进入强箍缩状态,但过小的阴极孔径会导致二极管间隙过早闭合。
  • 图  1  RPD基本结构及电子箍缩过程

    Figure  1.  Schematic illustration of the rod pinch diode (RPD)

    图  2  脉冲驱动器组成框图

    Figure  2.  Schematic illustration of the driver

    图  3  实验RPD真空室结构

    Figure  3.  Top view of the experimental RPD

    图  4  RPD实验和计算结果比较

    Figure  4.  Waveforms of RPD experiments and calculation with various parameters

    图  5  RPD功率和阻抗特性

    Figure  5.  Power and impedance of RPD with various parameters

    表  1  实验结果

    Table  1.   Results of experiments

    type2rc/mm2ra/mmLrod/mmpinch time/nspulse width of Vd/nscoupling energy/kJdose@1 m/R
    a4.51.510351202.750.83
    b9.01.510501602.850.93
    c15.01.510801903.150.98
    d19.01.5101051902.520.79
    下载: 导出CSV
  • [1] Maenchen J, Cooperstein G, O’Malley J, et al. Advances in pulsed power-driven radiography systems[J]. Proceedings of the IEEE, 2004, 92(7): 1021-1042. doi: 10.1109/JPROC.2004.829056
    [2] Ma Xun, Deng Jianjun, Liu Hongwei, et al. Development of all-solid-state flash X-ray generator with photo conductive semiconductor switches[J]. Review of Scientific Instruments, 2014, 85: 093307. doi: 10.1063/1.4895829
    [3] Goldsack T J, Bryant T F, Beech P F, et al. Multimegavolt multiaxis high-resolution flash X-ray source development for a new hydrodynamics research facility at AWE Aldermaston[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 239-253. doi: 10.1109/TPS.2002.1003866
    [4] 袁建强, 刘宏伟, 马勋, 等. 基于光导开关的固态脉冲功率源及其应用[J]. 高电压技术, 2015, 41(6):1807-1817. (Yuan Jianqiang, Liu Hongwei, Ma Xun, et al. Development and application of solid state pulsed power generators based on photoconductive semiconductor switches[J]. High Voltage Engineering, 2015, 41(6): 1807-1817
    [5] 孙凤举, 邱爱慈, 杨海亮, 等. 感应电压叠加器驱动阳极杆箍缩二极管型脉冲X射线源[J]. 强激光与粒子束, 2010, 22(4):936-940. (Sun Fengju, Qiu Aici, Yang Hailiang, et al. Pulsed X-ray source based on inductive voltage adder and rod pinch diode for radiography[J]. High Power Laser and Particle Beams, 2010, 22(4): 936-940 doi: 10.3788/HPLPB20102204.0936
    [6] 陈林, 谢卫平, 邓建军. X射线闪光照相杆箍缩二极管技术最新进展[J]. 强激光与粒子束, 2006, 18(4):643-647. (Chen Lin, Xie Weiping, Deng Jianjun. Development of rod-pinch diode for flash X-ray radiography[J]. High Power Laser and Particle Beams, 2006, 18(4): 643-647
    [7] Miller C L, Welch D R, Rose D V, et al. Detailed simulation of the CYGNUS rod pinch radiographic source[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2507-2513. doi: 10.1109/TPS.2010.2057448
    [8] Kwan T J T, Berninger M, Snell C, et al. Simulation of the Cygnus rod-pinch diode using the radiographic chain model[J]. IEEE Transactions on Plasma Science, 2009, 37(4): 530-537. doi: 10.1109/TPS.2009.2014767
    [9] 高屹, 邱爱慈, 吕敏, 等. Rod-pinch二极管箍缩特性的数值模拟[J]. 核技术, 2010, 33(8):575-579. (Gao Yi, Qiu Aici, Lv Min, et al. Numerical simulations of beam-pinching characteristics in a rod-pinch diode[J]. Nuclear Techniques, 2010, 33(8): 575-579
    [10] Rose D V, Welch D R, Oliver B V, et al. Coupled particle-in-cell and Monte Carlo transport modeling of intense radiographic sources[J]. Journal of Applied Physics, 2002, 91(5): 3328-3335. doi: 10.1063/1.1448868
    [11] Cooperstein G, Boller J R, Commisso R J, et al. Theoretical modeling and experimental characterization of a rod-pinch diode[J]. Physics of Plasmas, 2001, 8(10): 4618-4636. doi: 10.1063/1.1403016
    [12] Neira E, Vega F. Solution for the space-charge-limited current in coaxial vacuum diodes[J]. Physics of Plasmas, 2017, 24: 052117. doi: 10.1063/1.4983328
    [13] Greenwood A D, Hammond J F, Zhang P, et al. On relativistic space charge limited current in planar, cylindrical, and spherical diodes[J]. Physics of Plasmas, 2016, 23: 072101. doi: 10.1063/1.4954827
    [14] Oliver B V, Genoni T C, Rose D V, et al. The impedance characteristics of a rod-pinch diode[C]//PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers. 2001: 458-461.
    [15] Oliver B V, Ottinger P F, Genoni T C, et al. Magnetically insulated electron flow with ions with application to the rod-pinch diode[J]. Physics of Plasmas, 2004, 11(8): 3976-3991. doi: 10.1063/1.1771659
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1070
  • HTML全文浏览量:  336
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-05-01
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回