Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field
-
摘要: 针对超声振动对于激光烧蚀铝表面温度场的影响,建立了三维数值模型,利用ANSYS软件对超声振动辅助激光烧蚀金属铝的温度场进行了数值模拟。通过对比不同激光扫描速度、超声振动频率下激光相邻两个光斑温度场随时间的变化,发现相邻光斑的温度、尺寸以及位置均发生改变。数值研究表明,随着激光扫描速度的增加,激光扫描到相同位置的最大温度降低,而且凹坑的深度逐渐变浅;由于超声振动引起的介质分子位移,当超声振动频率为15 kHz时,凹坑温度发生了明显的下降且凹坑位置在振动方向发生了错位,这有利于产生新的激光作用轨迹。Abstract: In view of the influence of ultrasonic vibration on the temperature field of laser ablation of aluminum surface, a three-dimensional numerical model was established, and the temperature field of ultrasonic vibration assisted laser ablation of metal aluminum was numerically simulated by using ANSYS software. By comparing the change of temperature field of two adjacent spots with time under different laser scanning speed and ultrasonic vibration frequency, it is found that the temperature, size and position of adjacent spots all change. The numerical results show that with the increase of laser scanning speed, the maximum temperature of laser scanning to the same position decreases, and the depth of craters becomes shallow. Due to the displacement of medium molecules caused by ultrasonic vibration, when the ultrasonic vibration frequency is 15 kHz, the temperature of the crater decreases significantly and the crater position is misplaced in the direction of vibration, which is conducive to the generation of a new laser action trajectory. These experimental results have a certain guiding effect on the design of ultrasonic vibration assisted laser control parameters.
-
Key words:
- laser ablation /
- ANSYS /
- ultrasonic vibration /
- temperature field /
- finite element simulation
-
表 1 铝的热物参数表
Table 1. Thermophysical parameters of aluminum
temperature/℃ specific heat
capacity/(J/(kg·K))thermal conductivity/
(W/(m·K))density/
(kg/m3)liquidus
temperature/℃solidus
temperature/℃20 899.56 236.57 2700 660.2 660.2 200 983.24 238.66 2700 660.2 660.2 500 1121.3 221.49 2700 660.2 660.2 660 1196.6 212.7 2700 660.2 660.2 表 2 常用对流换热系数范围
Table 2. Common convection heat transfer coefficient range
condition forced convection
of gas/(W/(m2∙℃))natural air
convection/(W/(m2∙℃))forced convection
of water/(W/(m2∙℃))kerosene natural
convection/(W/(m2∙℃))coefficient values 20−100 3−10 1000−1500 500−1000 表 3 搭接率计算参数及结果
Table 3. Calculation parameters and results of lap joint rate
scanning speed/(mm/s) amplitude/μm frequency/kHz initial phase angle/(°) diameter of heat affected zone/μm overlap rate/% 200 0 0 0 50 74.71 200 10 15 0 50 64.47 400 10 15 0 50 45.02 600 10 15 0 50 25.22 800 10 15 0 50 8.58 1000 10 15 0 50 0 -
[1] Martin D J, Wells I T, Goodwin C R. Physics of ultrasound[J]. Physics, 2015: 132-135. [2] Marvin C, Ziskin M M. Fundamental physics of ultrasound and its propagation in tissue[J]. Radio Graphics, 1993, 13: 705-709. [3] 沈诚, 邹平, 康迪, 等. 超声振动透镜辅助激光打孔实验研究[J]. 中国机械工程, 2020, 31(21):2542-2546. (Shen Cheng, Zou Ping, Kang Di, et al. Experimental study on laser drilling assisted by ultrasonic vibrating lens[J]. China Mechanical Engineering, 2020, 31(21): 2542-2546 doi: 10.3969/j.issn.1004-132X.2020.21.004 [4] Wang Houxiao, Zhu Sukai, Xu Guoxiang, et al. Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd: YAG laser[J]. Optics & Laser Technology, 2018, 104: 133-139. [5] Alavi S H, Harimkar S P. Ultrasonic vibration-assisted continuous wave laser surface drilling of materials[J]. Manufacturing Letters, 2015, 4: 1-5. doi: 10.1016/j.mfglet.2015.01.002 [6] Li Meiyan, Zhang Qi, Han Bin, et al. Microstructure and property of Ni/WC/La2O3 coatings by ultrasonic vibration-assisted laser cladding treatment[J]. Optics and Lasers in Engineering, 2020, 125: 105848. doi: 10.1016/j.optlaseng.2019.105848 [7] Wu Dongjiang, Guo Minhai, Ma Guangyi, et al. Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating[J]. Materials Letters, 2015, 141: 207-209. doi: 10.1016/j.matlet.2014.11.058 [8] 徐家乐, 周建忠, 谭文胜, 等. 超声振动辅助激光熔覆钴基合金涂层的抗高温氧化性能[J]. 中国激光, 2019, 46(1):0102006. (Xu Jiale, Zhou Jianzhong, Tan Wensheng, et al. High temperature oxidation resistance of laser cladding cobalt-based alloy coating assisted by ultrasonic vibration[J]. Chinese Journal of Lasers, 2019, 46(1): 0102006 [9] 张朋波, 秦颖, 赵纪军, 等. 纳秒激光烧蚀铝材料的二维数值模拟[J]. 物理学报, 2010, 59(10):7120-7128. (Zhang Pengbo, Qin Ying, Zhao Jijun, et al. Two-dimensional numerical simulation of nanosecond laser ablation of aluminum materials[J]. Acta Physica Sinica, 2010, 59(10): 7120-7128 doi: 10.7498/aps.59.7120 [10] 龙城德, 赵斌, 袁鹏, 等. 小焦斑纳秒激光烧蚀铝平面靶的数值研究[J]. 强激光与粒子束, 2014, 26:102005. (Long Chengde, Zhao Bin, Yuan Peng, et al. Numerical study of nanosecond laser ablation of aluminum target with small focal spot[J]. High Power Laser and Particle Beams, 2014, 26: 102005 doi: 10.11884/HPLPB201426.102005 [11] 闫晓东, 任妮, 汤富领, 等. 移动脉冲激光刻蚀金属/聚酰亚胺数值模拟[J]. 中国激光, 2017, 44:0402001. (Yan Xiaodong, Ren Ni, Tang Fuling, et al. Numerical simulation of metal/polyimide etching with moving pulse laser[J]. Chinese Journal of Lasers, 2017, 44: 0402001 doi: 10.3788/CJL201744.0402001 [12] 文康, 李和章, 马壮, 等. 光斑尺寸对连续激光辐照铝合金温度响应影响研究[J]. 中国光学, 2020, 13(5):1023-1031. (Wen Kang, Li Hezhang, Ma Zhuang, et al. Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser[J]. Chinese Journal of Optics, 2020, 13(5): 1023-1031 doi: 10.37188/CO.2020-0022 [13] 胡仕成, 夏晨希, 邵高建, 等. 铝熔体中超声声流的数值模拟[J]. 铸造技术, 2010, 31(12):1609-1613. (Hu Shicheng, Xia Chenxi, Shao Gaojian, et al. Numerical simulation of Ultrasonic streams in pure aluminum melts[J]. Foundry Technology., 2010, 31(12): 1609-1613 [14] Tonry C E H, Djambazov G, Dybalska A, et al. Acoustic resonance for contactless ultrasonic cavitation in alloy melts[J]. Ultrason Sonochem, 2020, 63: 104959. doi: 10.1016/j.ultsonch.2020.104959 [15] 李玉海, 张乐, 卢伦, 等. 超高强度马氏体时效不锈钢超声疲劳过程中的热效应[J]. 金属热处理, 2015(9):55-58. (Li Yuhai, Zhang Le, Lu Lun, et al. Heat effect of ultra high strength maraging stainless steel during ultrasonic fatigue test[J]. Heat Treatment of Metals., 2015(9): 55-58