Thyratron trigger characteristics analysis of CSNS kicker power supply
-
摘要: 针对中国散裂中子源kicker电源的闸流管,研制了基于大电流脉冲预电离和高压脉冲点火原理的双脉冲触发器,提高了闸流管的触发导通稳定性;同时研究了氢流、灯丝电流及预点火电流等参数对闸流管状态的影响;针对闸流管误漏触发现象,研制了基于单稳态及逻辑门电路构成的误漏触发检测电路,能够对闸流管的状态进行准确分析及预判;最后对kicker脉冲电源系统进行了年度分析总结。
-
关键词:
- kicker脉冲电源 /
- 氢闸流管 /
- 闸流管触发器 /
- 误漏触发
Abstract: Hydrogen thyratron still plays an important role in the field of high voltage and high current technology, how to adjust the working parameters of thyratron is an important topic in pulse modulation technology. The performance and life of thyratron depend on thyratron trigger to a great extent. To optimize the performance of thyratron and make it preionize more sufficiently, the high current pulse preionization technology is adopted by analyzing the thyratron triggering characteristics. A thyratron double pulse trigger based on kicker pulse power supply of China spallation neutron source is developed. The trigger has excellent performance such as nanosecond rising edge, low jitter and high current output. The effects of different reservoir heater current, cathode heater current and pre-ignition parameters on the thyratron state are studied, aiming at the problem of mis-conduction and leak conduction of thyratron, a detection circuit based on monostable circuit and CMOS gate circuit is developed, which can accurately analyze and predict the state of thyratron. Finally, the fault of kicker pulse power supply system is analyzed and summarized annually. -
表 1 引出kicker脉冲电源设计指标
Table 1. Design index of kicker pulse power supply
excitation current/A rise time/ns flat top width/ns repetition rate/Hz flat top flatness/% 6660 <265 >600 25 <±1 表 2 CX1925X闸流管参数表
Table 2. CX1925X thyratron parameters
peak forward anode voltage/kV peak forward anode current/kA peak reverse anode current/ kA rate of rise of current/(kA/s) 80 15 10 100 表 3 双路触发高压脉冲参数
Table 3. Parameters of double trigger high voltage pulse
Grid 1 pulse voltage/V Grid 2 pulse voltage/V Grid 2 rate of rise/kV/s Grid 2 delay/s Grid 1 current/A 600~2000 1000~2000 >10 0.5~3.0 10~25 表 4 CSNS/RCS引出kicker脉冲电源年度统计
Table 4. Annual statistics of kicker pulse power failure
trigger grid1 pulse voltage/V grid2 pulse voltage/V rate of rise grid2 pulse/(kV/s) grid1 drive current/A jitter/ns failure time/h self developed trigger 1500 2200 38 10~25 2 1.3 MA2709A 800 1600 18 15 5 trigger2 1000 1500 17 15 5 5.63 -
[1] Wei Jie, Fu Sinian, Tang Jingyu. China Spallation Neutron Source-an overview of application prospects[J]. Chinese Physics C, 2009, 33(11): 1033-1042. doi: 10.1088/1674-1137/33/11/021 [2] 唐靖宇, 邱静, 王生, 等. 北京散裂中子源RCS注入系统物理设计和研究[J]. 高能物理与核物理, 2006, 30(12):1184-1189. (Tang Jingyu, Qiu Jing, Wang Sheng, et al. Physics design and study of the CSNS RCS injection system[J]. High Energy Physics and Nuclear Physics, 2006, 30(12): 1184-1189 doi: 10.3321/j.issn:0254-3052.2006.12.007 [3] 池云龙, 王玮. CSNS引出冲击磁铁脉冲电源设计[J]. 中国物理C, 2008, 32(S1):25-27. (Chi Yunlong, Wang Wei. Design of pulse power supply for CSNS extraction kicker magnet[J]. Chinese Physics C, 2008, 32(S1): 25-27 [4] 魏智. 发射机高压脉冲调制器的设计与实践[M]. 北京: 电子工业出版社, 2009Wei Zhi. Design and practice of transmitter high voltage pulse modulator[M]. Beijing: Electronic Industry Press, 2009 [5] 东冲. 线型脉冲调制器理论基础与专用电路[M]. 北京: 国防工业出版社, 1978Dong Chong. Theoretical basis and special circuit of linear pulse modulator[M]. Beijing: National Defense Industry Press, 1978 [6] Kamiya J, Takayanagi T, Watanabe M. Performance of extraction kicker magnet in a rapid cycling synchrotron[J]. Physical Review Accelerators and Beams, 2009: 072401. [7] Saethre R, Blokland W. Timing measurements of the extraction kicker system at the Spallation Neutron Source[C]//Pulsed Power Conference. 2013. [8] 王群要, 高大庆, 上官靖斌, 等. 重离子加速器Kicker电源监测系统设计与实现[J]. 计算机测量与控制, 2006, 14(9):1188-1190. (Wang Qunyao, Gao Daqing, Shangguan Jingbin, et al. Design and accomplishment of monitoring system in kicker power supply of HIRFL[J]. Computer Measurement and Control, 2006, 14(9): 1188-1190 doi: 10.3321/j.issn:1671-4598.2006.09.024 [9] 陈锦晖. 双脉冲闸流管触发器研制[J]. 原子能科学技术, 2013, 47(12):2370-2374. (Chen Jinhui. Research and development of dual pulse thyratron trigger[J]. Atomic Energy Science and Technology, 2013, 47(12): 2370-2374 doi: 10.7538/yzk.2013.47.12.2370 [10] Watanabe M, Kamiya J, Suganuma K, et al. Operation of kicker system using thyratron of the 3 GeV rapid cycling synchrotron of J-PARC[C]//Proceedings of IPAC’10. 2010: 3296-3298. [11] Morris B, Saethre R. Thyratron stability improvements of SNS extraction kicker system[C]//IEEE International Power Modulator and High Voltage Conference (IPMHVC). 2016. [12] 尚雷, 陆业明, 冯德仁, 等. 40 kV/20 kW开关型脉冲成形网络充电高压电源[J]. 强激光与粒子束, 2003, 15(7):697-700. (Shang Lei, Lu Yeming, Feng Deren, et al. Development of a 40 kV/20 kW, switching-mode pulse forming network charging power supply[J]. High Power Laser and Particle Beams, 2003, 15(7): 697-700 [13] 王莹. 高功率脉冲电源[M]. 北京: 原子能出版社, 1991Wang Ying. High power pulse power supply[M]. Beijing: Atomic Energy Press, 1991 [14] Reghu T, KumarM, Verma A, et al. A double output pulsed high current thyratron driver[J]. Review of Scientific Instruments, 2012, 83(11): 1-4. [15] Hydrogen Thyratrons Preamble (E2V Technologies Ltd, UK, 2002)[Z]. 2002.