留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ka波段分布作用速调管多间隙谐振腔研究

赖威豪 丁海兵 陆登峰 吉忠浩 肖韧

赖威豪, 丁海兵, 陆登峰, 等. Ka波段分布作用速调管多间隙谐振腔研究[J]. 强激光与粒子束, 2021, 33: 103008. doi: 10.11884/HPLPB202133.210294
引用本文: 赖威豪, 丁海兵, 陆登峰, 等. Ka波段分布作用速调管多间隙谐振腔研究[J]. 强激光与粒子束, 2021, 33: 103008. doi: 10.11884/HPLPB202133.210294
Lai Weihao, Ding Haibing, Lu Dengfeng, et al. Study of multi-gap resonant cavity for Ka-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2021, 33: 103008. doi: 10.11884/HPLPB202133.210294
Citation: Lai Weihao, Ding Haibing, Lu Dengfeng, et al. Study of multi-gap resonant cavity for Ka-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2021, 33: 103008. doi: 10.11884/HPLPB202133.210294

Ka波段分布作用速调管多间隙谐振腔研究

doi: 10.11884/HPLPB202133.210294
详细信息
    作者简介:

    赖威豪,18810736511@163.com

    通讯作者:

    丁海兵,dinghb@aircas.ac.cn

  • 中图分类号: TN122

Study of multi-gap resonant cavity for Ka-band extended interaction klystron

  • 摘要: 谐振腔作为速调管的高频互作用电路,其特性对速调管的功率、效率、增益和带宽等性能具有决定性影响。主要介绍了某Ka波段分布作用速调管谐振腔的设计过程:基于多间隙谐振腔理论,利用电磁仿真软件CST详细分析了谐振腔不同结构尺寸对特性参数,如品质因子、特性阻抗、耦合系数、有效特性阻抗的影响,优化得到谐振频率为35 GHz的五间隙谐振腔的物理结构模型,并给出互作用仿真结果,为Ka波段分布作用速调管设计及其高频注波互作用的计算提供重要的参考和依据。
  • 图  1  矩形重入式谐振腔结构示意图

    Figure  1.  Structure diagram of rectangular renovation cavity

    图  2  多间隙梯形结构的谐振腔结构示意图

    Figure  2.  Structure of multi-gap trapezoidal resonant cavity

    图  3  谐振腔间隙结构剖面图

    Figure  3.  Sectional view of multi-gap structure of resonant cavity

    图  4  三、五、七间隙谐振腔结构示意图

    Figure  4.  Structure of three-gap, five-gap, seven-gap of resonant cavity

    图  5  不同间隙数的π模下的电场分布图

    Figure  5.  Electric field distribution of π-mode with different gap numbers

    图  6  五、七间隙模式间隔

    Figure  6.  Five-gap and seven-gap pattern interval

    图  7  五间隙谐振腔PIC模型示意图

    Figure  7.  Schematic diagram of PIC model of five-gap resonant cavity

    图  8  三间隙,五间隙和七间隙输出信号时域波形图

    Figure  8.  Time-domain waveform of three-gap,five-gap,seven-gap output signal

    图  9  高斯分布电子注设置图

    Figure  9.  Gaussian distribution electronic note setting diagram

    图  10  特性参数随间隙距离d的变化图

    Figure  10.  Variation of characteristic parameters with gap distance

    图  11  特性参数随间隙周期p的变化

    Figure  11.  Variation of characteristic parameters with gap period

    图  12  特性参数随间隙长度的变化图

    Figure  12.  Variation of characteristic parameters with gap length

    图  13  特性参数随长槽高度的变化图

    Figure  13.  Variation of characteristic parameters with height of long groove

    图  14  特性参数随短槽高度的变化图

    Figure  14.  Variation of characteristic parameters with height of short groove

    图  15  特性参数随耦合腔长度的变化图

    Figure  15.  Variation of characteristic parameters with coupling cavity length

    图  16  特性参数随耦合腔高度的变化图

    Figure  16.  Variation of characteristic parameters with coupling cavity height

    表  1  谐振频率35 GHz的五间隙谐振腔的初始参数

    Table  1.   Initial parameters of a five-gap resonant cavity with a resonant frequency of 35 GHz (mm)

    dpgap_lengthgap_lhighgap_shighcoup_widthcoupL_high, coupR_highcoupL_length, coupR_length
    0.40.841.44.63.93.764.62.5
    下载: 导出CSV

    表  2  不同间隙数的谐振腔性能参数对比表

    Table  2.   Comparison of performance parameters of resonant cavity with different gap numbers

    MR/QM2R/Qnumber of patterns
    3-gap0.71340.24120.455
    5-gap0.73065.90035.119
    7-gap0.74790.56050.5513
    下载: 导出CSV

    表  3  谐振频率35 GHz的五间隙谐振腔的参数

    Table  3.   Structural parameters of the five-gap resonant cavity at the frequency of 35 GHz (mm)

    dpgap_lengthgap_lhighgap_shighcoup_widthcoupL_high, coupR_highcoupL_length, coupR_length
    0.40.841.64.84.13.764.82.8
    下载: 导出CSV
  • [1] Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IRE Transactions on Electron Devices, 1961, 8(1): 44-55. doi: 10.1109/T-ED.1961.14708
    [2] 丁耀根. 大功率速调管的理论与计算模拟[M]. 北京: 国防工业出版社, 2008

    Ding Yaogen. Theory and computer simulation of high power klystron[M]. Beijing: National Defense Industry Press, 2008
    [3] Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Transactions on Electron Devices, 2014, 61(6): 1830-1835. doi: 10.1109/TED.2014.2302741
    [4] Roitman A, Viant M, Nilsen C, et al. On-orbit performance of the CloudSat EIK and future space missions[C]//2007 IEEE International Vacuum Electronics Conference. 2007: 1-2.
    [5] Feng Haiping, Sun Fujiang, Li Dongfeng. Development of Ka-band extended-interaction klystron[C]//2019 International Vacuum Electronics Conference (IVEC). 2019: 1-2.
    [6] Wei Ying, Li Dongfeng, Zhou Jun, et al. A high power W-band extended interaction klystron[C]//2019 International Vacuum Electronics Conference (IVEC). 2019: 1-2.
    [7] Ding Haibing, Li Weisong, Lu Dengfeng, et al. Development progress of high power continuous wave klystrons[C]//2020 Cross Strait Radio Science and Wireless Technology Conference. Fuzhou, China: IEEE, 2020: 1-2.
    [8] 王柳亚, 丁海兵. Ka波段分布作用速调管降压收集极设计[J]. 强激光与粒子束, 2020, 32:083001. (Wang Liuya, Ding Haibing. Design of depressed collector for Ka-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 083001
    [9] Ding Haibing, Ding Yaogen, Sun Xiaoxin, et al. Design of X-band 80kW CW broadband klystron[C]//2015 IEEE International Vacuum Electronics Conference. Beijing, China: IEEE, 2015: 1-2.
    [10] 吴振华, 张开春, 刘盛纲. 扩展互作用谐振腔的模拟分析[J]. 强激光与粒子束, 2007, 19(3):483-486. (Wu Zhenhua, Zhang Kaichun, Liu Shenggang. Simulation of extended interaction oscillator[J]. High Power Laser and Particle Beams, 2007, 19(3): 483-486
    [11] Song Yihao, Ding Haibing, Tang Ke, et al. Design of a RF interaction system for a Ka-band EIK[C]//2019 IEEE International Vacuum Electronics Conference. 2019: 1-2.
    [12] 丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010

    Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010
    [13] 任绪迅. 毫米波带状注扩展互作用器件高频系统研究[D]. 成都: 电子科技大学, 2017

    Ren Xuxun. Study of sheet beam extended interaction resonate in millimeter wave band[D]. Chengdu: University of Electronic Science and Technology, 2017
    [14] 张长青, 阮存军, 王树忠, 等. 梯形结构高功率扩展互作用速调管[J]. 红外与毫米波学报, 2015, 34(3):307-313. (Zhang Changqing, Ruan Cunjun, Wang Shuzhong, et al. High-power extended-interaction klystron with ladder-type structure[J]. Journal of Infrared and Millimeter Waves, 2015, 34(3): 307-313 doi: 10.11972/j.issn.1001-9014.2015.03.010
    [15] 陈姝媛, 阮存军, 阮望, 等. W波段带状注速调管多间隙腔高频结构及其特性[J]. 红外与毫米波学报, 2012, 31(4):360-366. (Chen Shuyuan, Ruan Cunjun, Ruan Wang, et al. RF structure and the cavity characteristics of W-band sheet beam klystron[J]. Journal of Infrared and Millimeter Waves, 2012, 31(4): 360-366 doi: 10.3724/SP.J.1010.2012.00360
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  793
  • HTML全文浏览量:  256
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16
  • 修回日期:  2021-09-29
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回