留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多反应通道的高产额激光中子源实验研究

崔波 张智猛 戴曾海 齐伟 邓志刚 黄华 贺书凯 王为武 滕建 张博 刘红杰 陈家斌 肖云青 吴笛 马文君 洪伟 粟敬钦 周维民 谷渝秋

崔波, 张智猛, 戴曾海, 等. 基于多反应通道的高产额激光中子源实验研究[J]. 强激光与粒子束, 2021, 33: 094004. doi: 10.11884/HPLPB202133.210330
引用本文: 崔波, 张智猛, 戴曾海, 等. 基于多反应通道的高产额激光中子源实验研究[J]. 强激光与粒子束, 2021, 33: 094004. doi: 10.11884/HPLPB202133.210330
Cui Bo, Zhang Zhimeng, Dai Zenghai, et al. Experimental study of high yield neutron source based on multi reaction channels[J]. High Power Laser and Particle Beams, 2021, 33: 094004. doi: 10.11884/HPLPB202133.210330
Citation: Cui Bo, Zhang Zhimeng, Dai Zenghai, et al. Experimental study of high yield neutron source based on multi reaction channels[J]. High Power Laser and Particle Beams, 2021, 33: 094004. doi: 10.11884/HPLPB202133.210330

基于多反应通道的高产额激光中子源实验研究

doi: 10.11884/HPLPB202133.210330
基金项目: 科学挑战专题项目(TZ2018005);等离子体物理重点实验室基金项目(6142A04190101);北京大学核物理与核技术国家重点实验室研究类开放课题(NPT2020KFY01)
详细信息
    作者简介:

    崔 波,cuibo@caep.cn

    通讯作者:

    谷渝秋,yqgu@caep.cn

  • 中图分类号: TL816.3;TL812.2

Experimental study of high yield neutron source based on multi reaction channels

  • 摘要: 基于超短超强激光的短脉冲中子源是实现超快中子探测的理想中子源。如何提升中子产额是目前短脉冲激光中子源实现应用需求亟需解决的关键问题。提出基于靶背鞘场加速机制和束靶反应方案,采用LiD复合组分靶作为中子转换体,可以有效提升激光中子产额。与常规的LiF转换体相比,除了p-Li和d-Li两个反应道之外,LiD转换体可以多出p-D和d-D两个反应道,因此可充分利用激光加速的质子和氘离子的多反应通道优势来提升中子产生概率。实验结果表明,相比于LiF转换体,LiD转换体可带来中子产额2~3倍的提升,达到5.2×108 n/sr的最高中子产额,并具备更好的前冲性。实验还区分了多反应通道的贡献,证明中子产额提升主要来自于p-D反应。
  • 图  1  实验设置

    Figure  1.  Experimental setup

    图  2  汤姆逊离子谱仪测量质子和氘离子能谱

    Figure  2.  Proton and deuteron spectra diagnosed by Thomson spectrometer

    图  3  气泡探测器测量中子产额及角分布

    Figure  3.  Neutron yield and angle distribution measured by bubble detector

    图  4  p-D和d-D反应截面[17]

    Figure  4.  Cross section of p-D and d-D

    图  5  铟和铜的中子活化反应截面[17]

    Figure  5.  Neutron activation cross section of In and Cu

    图  6  不同转换体中子产额气泡探测器和铟活化测量结果比较

    Figure  6.  Neutron yield diagnosed by bubble detector and In activation between different neutron converters

    图  7  液体闪烁体探测器测得的中子信号

    Figure  7.  Neutron signal measured by liquid scintillator detector

    表  1  气泡探测器测量的中子产额

    Table  1.   Neutron yield diagnosed by bubble detector

    shottargetneutron yield/sr−1
    #96 Cu-CD+LiD (3.0±0.7)×108
    #97 Cu-CD+LiD (4.5±1.1)×108
    #98 Cu-CD+LiF (1.9±0.5)×108
    #99 Cu+LiD (3.3±0.7)×108
    #101 Cu-CD+LiD (5.2±1.1)×108
    #103 Cu-CD+LiF (1.5±0.6)×108
    下载: 导出CSV

    表  2  铟活化、铜活化中子产额测量结果

    Table  2.   Neutron yield diagnosed by In activation and Cu activation

    shottargetIn activation/sr−1Cu activation/sr−1
    #96 Cu-CD+LiD 1.2×108 9.6×107
    #97 Cu-CD+LiD 1.4×108 2.8×107
    #98 Cu-CD+LiF 3.7×107 7.5×106
    #99 Cu+LiD 8.7×107 4.9×106
    #101 Cu-CD+LiD 1.5×108 8.9×106
    #103 Cu-CD+LiF 3.9×107 2.7×107
    下载: 导出CSV
  • [1] Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
    [2] Pomerantz I, McCary E, Meadows A R, et al. Ultrashort pulsed neutron source[J]. Physical Review Letters, 2014, 113: 184801. doi: 10.1103/PhysRevLett.113.184801
    [3] Roth M, Jung D, Falk K, et al. Physics: a tabletop neutron source[J]. Nature, 2013, 494: 044802.
    [4] Jung D, Falk K, Guler N, et al. Characterization of a novel, short pulse laser-driven neutron source[J]. Physics of Plasmas, 2013, 20: 056706. doi: 10.1063/1.4804640
    [5] Favalli A, Aymond F, Bridgewater J S, et al. Nuclear material detection by one-short-pulse-laser-driven neutron source[C]//IEEE Nuclear Symposium. Seattle, 2015.
    [6] Guler N, Volegov P, Favalli A, et al. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility[J]. Journal of Applied Physics, 2016, 120: 154901. doi: 10.1063/1.4964248
    [7] Fernandez J C, Barnes C W, Mocko M J, et al. Sensitivity analysis and requirements for temporally and spatially resolved thermometry using neutron resonance spectroscopy[R]. LA-UR-18-20686, 2018.
    [8] Lancaster K L, Karsch S, Habara H, et al. Characterization of 7Li(p, n)7Be neutron yields from laser produced ion beams for fast neutron radiography[J]. Physics of Plasmas, 2004, 11(7): 3404-3408. doi: 10.1063/1.1756911
    [9] Kleinschmidt A, Bagnoud V, Deppert O, et al. Intense, directed neutron beams from a laser-driven neutron source at PHELIX[J]. Physics of Plasmas, 2018, 25: 053101. doi: 10.1063/1.5006613
    [10] 吴学志, 寿寅任, 弓正, 等. 激光离子加速研究与应用展望[J]. 强激光与粒子束, 2020, 32:092002. (Wu Xuezhi, Shou Yinren, Gong Zheng, et al. Laser-driven ion acceleration: development and potential applications[J]. High Power Laser and Particle Beams, 2020, 32: 092002
    [11] Zulick C, Dollar F, Chvykov V, et al. Energetic neutron beams generated from femtosecond laser plasma interactions[J]. Applied Physics Letters, 2013, 102: 124101. doi: 10.1063/1.4795723
    [12] Willingale L, Petrov G M, Maksimchuk A, et al. Comparison of bulk and pitcher-catcher targets for laser-driven neutron production[J]. Physics of Plasmas, 2011, 18: 083106. doi: 10.1063/1.3624769
    [13] 崔波, 贺书凯, 刘红杰, 等. 液体闪烁体探测器测量皮秒激光脉冲中子源能谱[J]. 强激光与粒子束, 2016, 28:124005. (Cui Bo, He Shukai, Liu Hongjie, et al. Neutron spectrum measurement for picosecond laser pulse neutron source experiment with liquid scintillator detector[J]. High Power Laser and Particle Beams, 2016, 28: 124005 doi: 10.11884/HPLPB201628.160414
    [14] Olsher R H, McLean T D, Mallett M W, et al. High-energy response of passive dosemeters in use at LANL[J]. Radiation Protection Dosimetry, 2007, 126(1/4): 326-332.
    [15] Bubble Technology Industries Inc[EB/OL]. http://bubbletech.ca/.
    [16] https://www-nds.iaea.org/exfor/servlet/
    [17] Petrov G M, Higginson D P, Davis J, et al. Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers[J]. Physics of Plasmas, 2012, 19: 093106. doi: 10.1063/1.4751460
    [18] Cui Bo, Fang Zhiheng, Dai Zenghai, et al. Nuclear diagnosis of the fuel areal density for direct-drive deuterium fuel implosion at the Shenguang-II Upgrade laser facility[J]. Laser and Particle Beams, 2018, 36(4): 494-501. doi: 10.1017/S026303461800054X
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1018
  • HTML全文浏览量:  441
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-09-03
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回