留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩感知技术在激光惯性约束聚变研究中的应用

王峰 理玉龙 关赞洋 张兴 李晋 黄运保 甘华权 车兴森

王峰, 理玉龙, 关赞洋, 等. 压缩感知技术在激光惯性约束聚变研究中的应用[J]. 强激光与粒子束, 2022, 34: 031021. doi: 10.11884/HPLPB202234.210250
引用本文: 王峰, 理玉龙, 关赞洋, 等. 压缩感知技术在激光惯性约束聚变研究中的应用[J]. 强激光与粒子束, 2022, 34: 031021. doi: 10.11884/HPLPB202234.210250
Wang Feng, Li Yulong, Guan Zanyang, et al. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34: 031021. doi: 10.11884/HPLPB202234.210250
Citation: Wang Feng, Li Yulong, Guan Zanyang, et al. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34: 031021. doi: 10.11884/HPLPB202234.210250

压缩感知技术在激光惯性约束聚变研究中的应用

doi: 10.11884/HPLPB202234.210250
基金项目: 国家重点研发计划项目(2017YFA0403300:;国家自然科学基金项目(11805184,11805178,11805185:中国工程物理研究院院长基金项目(YZJJLX2019011:科学挑战专题(TZ2016001);中物院激光聚变研究中心青年人才基金项目(RCFPD4-2020-1)
详细信息
    作者简介:

    王 峰,lfrc_wangfeng@163.com

  • 中图分类号: TN249

Application of compressed sensing technology in laser inertial confinement fusion

  • 摘要: 激光驱动惯性约束聚变(ICF)研究是当前国际前沿科学中一个具有挑战性的研究领域,它以高能激光作为驱动源,在极短的时间内将大量能量注入靶丸中使聚变材料达到高温高密度的状态从而在靶丸中心形成热斑并引燃整个燃料层,最终实现可控核聚变。由于内爆热斑直径为50~100 μm,其持续时间为100~200 ps,离子温度达到5 keV,压力可达4.0×1016 Pa。因此,发展极端瞬态条件下的诊断技术具有重要意义。介绍了两种基于压缩感知技术的诊断方法,第一种是基于数字微镜阵列(DMD)进行编码的反射式可见光压缩感知技术,这种技术将现有的一维任意反射面速度干涉仪(VISAR)与压缩超快成像(CUP)系统相结合,有望实现一种全新的具有高时间分辨的二维VISAR诊断技术,将诊断维度从一维扩展至二维,同时它克服了现有的二维VISAR单幅成像的缺点,有望实现对内爆压缩过程流体力学不稳定性演化过程的连续诊断。由于基于DMD进行编码的反射式可见光压缩感知技术只能用于可见光波段,无法用于紫外与X光波段,为此还发展了一种透射式压缩感知技术。这种透射式压缩感知技术采用一种新颖的透射式元件实现对待测信号的编码,可以实现对紫外和X光波段信号的二维超快探测,有望实现对内爆热斑超快时空演化过程进行精密诊断。此外,针对单通道CUP技术的高时间分辨的优势和低空间分辨的不足,还提出了多通道编码、分别扫描、解码、再合成的全新的高时空分辨诊断系统基本思路,有望实现高时间分辨的同时,实现高空间分辨的二维新型诊断技术。
  • 图  1  CUP系统光路示意图

    Figure  1.  Schematic diagram of CUP system

    图  2  实验光路排布图

    Figure  2.  Schematic diagram of experimental light path

    图  3  实验中实测编码压缩图和解码重构结果

    Figure  3.  The measured result in experiment and the reconstruction result

    图  4  紫外透射编码模块结构示意图

    Figure  4.  Configuration of the UV transmission encoding module

    图  5  X光编码示意图

    Figure  5.  The encoding method of X-ray

    图  6  实验排布图

    Figure  6.  Schematic of experimental setup

    图  7  静态编码图像

    Figure  7.  Static image of the encoding pattern with and without graphics mask of Li (a) without graphics mask (b) with graphics mask

    图  8  动态实验结果图像

    Figure  8.  Images of the dynamic experiment

    图  9  基于超快压缩照相技术和宽阴极X射线条纹相机的扫描分幅系统基本设计

    Figure  9.  Basic design of scanning framing system based on CUP technology and wide cathode X-ray fringe camera

  • [1] Hurricane O A, Callahan D A, Casey D T, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 2016, 12(8): 800-806. doi: 10.1038/nphys3720
    [2] Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
    [3] Kline J L, Batha S H, Benedetti L R, et al. Progress of indirect drive inertial confinement fusion in the United States[J]. Nuclear Fusion, 2019, 59: 112018. doi: 10.1088/1741-4326/ab1ecf
    [4] Clark D S, Weber C R, Milovich J L, et al. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions[J]. Physics of Plasmas, 2019, 26: 050601. doi: 10.1063/1.5091449
    [5] 陈伯伦, 蒋炜, 景龙飞, 等. 再发射技术测量SGⅡ黑腔靶早期对称性[J]. 强激光与粒子束, 2013, 25(2):385-388. (Chen Bolun, Jiang Wei, Jing Longfei, et al. Re-emission technique for early time, hohlraum radiation symmetry measurements on SG Ⅱ facility[J]. High Power Laser and Particle Beams, 2013, 25(2): 385-388 doi: 10.3788/HPLPB20132502.0385
    [6] 黎航, 蒲昱东, 景龙飞, 等. 间接驱动的内爆不对称性随腔长和时间变化的研究[J]. 物理学报, 2013, 62:225204. (Li Hang, Pu Yudong, Jing Longfei, et al. Variations of implosion asymmetry with hohlraum length and time in indirect-drive inertial confinement fusion[J]. Acta Physica Sinica, 2013, 62: 225204 doi: 10.7498/aps.62.225204
    [7] 董建军, 曹柱荣, 杨正华, 等. 辐射驱动内爆流线实验测量[J]. 物理学报, 2012, 61:155208. (Dong Jianjun, Cao Zhurong, Yang Zhenghua, et al. Measurement of implosion trajectory for hohlraum-radiative-driven[J]. Acta Physica Sinica, 2012, 61: 155208 doi: 10.7498/aps.61.155208
    [8] Li Yaran, Dong Jianjun, Xie Qing, et al. Development of a polar-view Kirkpatrick-Baez X-ray microscope for implosion asymmetry studies[J]. Optics Express, 2019, 27(6): 8348-8360. doi: 10.1364/OE.27.008348
    [9] Nagel S R, Hilsabeck T J, Bell P M, et al. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)[J]. Review of Scientific Instruments, 2014, 85: 11E504. doi: 10.1063/1.4890396
    [10] Hilsabeck T J, Nagel S R, Hares J D, et al. Picosecond imaging of inertial confinement fusion plasmas using electron pulse-dilation[C]//Proceedings of SPIE 10328, Selected Papers from the 31st International Congress on High-Speed Imaging and Photonics. Osaka: SPIE, 2017: 103280S.
    [11] Shiraga H. Review of concepts and applications of image sampling on high-speed streak cameras[C]//Proceedings of SPIE 10328, Selected Papers from the 31st International Congress on High-Speed Imaging and Photonics. Osaka: SPIE, 2017: 103280R.
    [12] Nagel S R, Bell P M, Bradley D K, et al. Fielding DIXI - a new x-ray framing camera for the NIF - at JLF[R]. LLNL-PRES-617852.
    [13] Engelhorn K, Hilsabeck T J, Kilkenny J, et al. Sub-nanosecond single line-of-sight (SLOS) x-ray imagers (invited)[J]. Review of Scientific Instruments, 2018, 89: 10G123. doi: 10.1063/1.5039648
    [14] Theobald W, Sorce C, Bedzyk M, et al. The single-line-of-sight, time-resolved X-ray imager diagnostic on OMEGA[J]. Review of Scientific Instruments, 2018, 89: 10G117. doi: 10.1063/1.5036767
    [15] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [16] Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516(7529): 74-77. doi: 10.1038/nature14005
    [17] Lai Yingming, Xue Yujia, Côté C Y, et al. Single-shot ultraviolet compressed ultrafast photography[J]. Laser & Photonics Reviews, 2020, 14: 2000122.
    [18] Dong Chao, Loy C C, He Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. doi: 10.1109/TPAMI.2015.2439281
    [19] Conkey D B, Caravaca-Aguirre A M, Dove J D, et al. Super-resolution photoacoustic imaging through a scattering wall[J]. Nature Communications, 2015, 6: 7902. doi: 10.1038/ncomms8902
    [20] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457. doi: 10.1002/cpa.20042
    [21] Bioucas-Dias J M, Figueiredo M A T. A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004. doi: 10.1109/TIP.2007.909319
  • 加载中
图(9)
计量
  • 文章访问数:  2242
  • HTML全文浏览量:  522
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-26
  • 修回日期:  2021-12-27
  • 网络出版日期:  2022-01-04
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回