留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海软X射线自由电子激光外种子运行模式的模拟研究

范伟杰 冯超 赵明华

范伟杰, 冯超, 赵明华. 上海软X射线自由电子激光外种子运行模式的模拟研究[J]. 强激光与粒子束, 2022, 34: 031016. doi: 10.11884/HPLPB202234.210262
引用本文: 范伟杰, 冯超, 赵明华. 上海软X射线自由电子激光外种子运行模式的模拟研究[J]. 强激光与粒子束, 2022, 34: 031016. doi: 10.11884/HPLPB202234.210262
Fan Weijie, Feng Chao, Zhao Minghua. Simulation studies of external seeding schemes for Shanghai soft X-ray free electron laser[J]. High Power Laser and Particle Beams, 2022, 34: 031016. doi: 10.11884/HPLPB202234.210262
Citation: Fan Weijie, Feng Chao, Zhao Minghua. Simulation studies of external seeding schemes for Shanghai soft X-ray free electron laser[J]. High Power Laser and Particle Beams, 2022, 34: 031016. doi: 10.11884/HPLPB202234.210262

上海软X射线自由电子激光外种子运行模式的模拟研究

doi: 10.11884/HPLPB202234.210262
基金项目: 国家自然科学基金项目(12122514,11975300)
详细信息
    作者简介:

    范伟杰,fanweijie@sinap.ac.cn

    通讯作者:

    冯 超,fengchao@zjlab.org.cn

  • 中图分类号: TL53

Simulation studies of external seeding schemes for Shanghai soft X-ray free electron laser

  • 摘要: 上海软X射线自由电子激光用户装置(SXFEL)是我国首台可以运行在水窗波段的自由电子激光装置,未来可以为5个实验线站供光,其主要运行模式为自放大自发辐射模式以及外种子模式。本文就SXFEL的外种子模式进行了从头到尾的模拟研究,主要包括EEHG-HGHG混合级联与单级EEHG两种方案。模拟结果表明,虽然EEHG-HGHG混合级联模式较为复杂,但能够产生更高功率的高次谐波辐射。除此之外,我们还研究了各种三维效应对EEHG的影响。模拟和分析结果表明,通过上述两种方案,采用紫外波段的种子激光,用户可以得到全相干、窄带宽、短脉冲的水窗波段自由电子激光。
  • 图  1  上海软X射线用户装置简图

    Figure  1.  Schematic layout of the SXFEL

    图  2  级联EEHG-HGHG模式示意图

    Figure  2.  Schematic layout of the cascade EEHG-HGHG mode

    图  3  单级 EEHG 模式示意图

    Figure  3.  Schematic layout of the single stage EEHG mode

    图  4  级联EEHG-HGHG模式第一个辐射段出口的FEL辐射

    Figure  4.  Cascade EEHG-HGHG mode FEL radiation at the exit of the first radiator

    图  5  级联EEHG-HGHG模式第二个辐射段出口的FEL辐射

    Figure  5.  Cascade EEHG-HGHG mode FEL radiation at the exit of the second radiator

    图  6  单级EEHG模式波荡器出口的FEL辐射

    Figure  6.  Single stage EEHG FEL radiation at the exit of undulator

    图  7  级联EEHG-HGHG模式中两束种子激光的时间与能量抖动对辐射的影响

    Figure  7.  Timing jitter and power jitter of the seed lasers in the cascade EEHG-HGHG mode

    图  8  单级EEHG模式中两束种子激光的时间与能量抖动对辐射的影响

    Figure  8.  Timing jitter and power jitter of the seed lasers in the single stage EEHG mode

    表  1  模拟所使用的主要参数

    Table  1.   Main parameters in the simulations

    energy/MeVpeak current/Asliced energy spread/keVnormarlized emittance/(mm mrad)
    14008001001.5
    bunch length/fspower of seed lasers/MWmudulator period numbersmudulator period length/m
    500(FWHM)200/80020/20/1000.08/0.08/0.03
    下载: 导出CSV
  • [1] Madey J M J. Stimulated emission of bremsstrahlung in a periodic magnetic field[J]. Journal of Applied Physics, 1971, 42(5): 1906-1913. doi: 10.1063/1.1660466
    [2] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647. doi: 10.1038/nphoton.2010.176
    [3] Amann J, Berg W, Blank V, et al. Demonstration of self-seeding in a hard-X-ray free-electron laser[J]. Nature Photonics, 2012, 6(10): 693-698. doi: 10.1038/nphoton.2012.180
    [4] Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 2012, 6(8): 540-544. doi: 10.1038/nphoton.2012.141
    [5] Shim C H, Yang H, Hong J, et al. Intensity optimization of X-ray free-electron laser by using phase shifters[J]. Physical Review Accelerators and Beams, 2020, 23: 90702. doi: 10.1103/PhysRevAccelBeams.23.090702
    [6] Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7(11): 913-918. doi: 10.1038/nphoton.2013.277
    [7] Yu L H, Ben-Zvi I. High-gain harmonic generation of soft X-rays with the “fresh bunch” technique[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 393(1/3): 96-99.
    [8] Milton S V, Gluskin E, Arnold N D, et al. Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser[J]. Science, 2001, 292(5524): 2037-2041. doi: 10.1126/science.1059955
    [9] Feng C, Deng H X. Review of fully coherent free-electron lasers[J]. Nuclear Science and Techniques, 2018, 29: 160. doi: 10.1007/s41365-018-0490-1
    [10] 周开尚. 超高亮度X射线自由电子激光物理研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018

    Zhou Kaishang. Physical study of the ultra-high brightness X-ray free electron laser[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2018
    [11] Xiang D, Stupakov G. Echo-enabled harmonic generation free electron laser[J]. Physical Review Special Topics—Accelerators and Beams, 2009, 12: 030702. doi: 10.1103/PhysRevSTAB.12.030702
    [12] Borland M. ELEGANT: a flexible SDDS-compliant code for accelerator simulation[R]. LS-287: 2000.
    [13] Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.
    [14] Stupakov G. Using the beam-echo effect for generation of short-wavelength radiation[J]. Physical Review Letters, 2009, 102: 074801. doi: 10.1103/PhysRevLett.102.074801
    [15] Xiang D, Stupakov G. Tolerance study for the echo-enabled harmonic generation free electron laser[R]. SLAC-PUB-13644, 2009.
    [16] Hemsing E, Garcia B, Huang Z, et al. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure[J]. Physical Review Accelerators and Beams, 2017, 20: 060702. doi: 10.1103/PhysRevAccelBeams.20.060702
    [17] Penn G. Intra-beam scattering for free electron lasers and its modeling in chicanes[EB/OL]. [2014-09].https://escholarship.org/uc/item/3jn7g33k.
    [18] Stupakov G. Effect of coulomb collisions on echo-enabled harmonic generation (EEHG)[C]//Proceedings of FEL 2011. Shanghai: 2011.
    [19] Stupakov G. Effect of coulomb collisions on echo-enabled harmonic generation[C]//Proceedings of FEL 2013. New York: 2013.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1503
  • HTML全文浏览量:  541
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-11-01
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回