Simulation studies of external seeding schemes for Shanghai soft X-ray free electron laser
-
摘要: 上海软X射线自由电子激光用户装置(SXFEL)是我国首台可以运行在水窗波段的自由电子激光装置,未来可以为5个实验线站供光,其主要运行模式为自放大自发辐射模式以及外种子模式。本文就SXFEL的外种子模式进行了从头到尾的模拟研究,主要包括EEHG-HGHG混合级联与单级EEHG两种方案。模拟结果表明,虽然EEHG-HGHG混合级联模式较为复杂,但能够产生更高功率的高次谐波辐射。除此之外,我们还研究了各种三维效应对EEHG的影响。模拟和分析结果表明,通过上述两种方案,采用紫外波段的种子激光,用户可以得到全相干、窄带宽、短脉冲的水窗波段自由电子激光。Abstract: Shanghai Soft X-ray Free Electron Laser User Facility (SXFEL-UF) is the first X-ray FEL in China that can produce coherent radiation in the water-window regime. The main working modes of SXFEL are self-amplified spontaneous emission and external seeding schemes. This paper mainly focuses on the start to end simulations of the external seeding schemes including echo-enabled harmonic generation-high gain harmonic generation cascade (EEHG-HGHG cascade) and single stage echo-enabled harmonic generation (EEHG). 3D simulations indicates that these external seeding schemes can generate coherent X-ray radiation at soft X-ray regime directly from a conventional UV seed laser.
-
表 1 模拟所使用的主要参数
Table 1. Main parameters in the simulations
energy/MeV peak current/A sliced energy spread/keV normarlized emittance/(mm mrad) 1400 800 100 1.5 bunch length/fs power of seed lasers/MW mudulator period numbers mudulator period length/m 500(FWHM) 200/800 20/20/100 0.08/0.08/0.03 -
[1] Madey J M J. Stimulated emission of bremsstrahlung in a periodic magnetic field[J]. Journal of Applied Physics, 1971, 42(5): 1906-1913. doi: 10.1063/1.1660466 [2] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647. doi: 10.1038/nphoton.2010.176 [3] Amann J, Berg W, Blank V, et al. Demonstration of self-seeding in a hard-X-ray free-electron laser[J]. Nature Photonics, 2012, 6(10): 693-698. doi: 10.1038/nphoton.2012.180 [4] Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 2012, 6(8): 540-544. doi: 10.1038/nphoton.2012.141 [5] Shim C H, Yang H, Hong J, et al. Intensity optimization of X-ray free-electron laser by using phase shifters[J]. Physical Review Accelerators and Beams, 2020, 23: 90702. doi: 10.1103/PhysRevAccelBeams.23.090702 [6] Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7(11): 913-918. doi: 10.1038/nphoton.2013.277 [7] Yu L H, Ben-Zvi I. High-gain harmonic generation of soft X-rays with the “fresh bunch” technique[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 393(1/3): 96-99. [8] Milton S V, Gluskin E, Arnold N D, et al. Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser[J]. Science, 2001, 292(5524): 2037-2041. doi: 10.1126/science.1059955 [9] Feng C, Deng H X. Review of fully coherent free-electron lasers[J]. Nuclear Science and Techniques, 2018, 29: 160. doi: 10.1007/s41365-018-0490-1 [10] 周开尚. 超高亮度X射线自由电子激光物理研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018Zhou Kaishang. Physical study of the ultra-high brightness X-ray free electron laser[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2018 [11] Xiang D, Stupakov G. Echo-enabled harmonic generation free electron laser[J]. Physical Review Special Topics—Accelerators and Beams, 2009, 12: 030702. doi: 10.1103/PhysRevSTAB.12.030702 [12] Borland M. ELEGANT: a flexible SDDS-compliant code for accelerator simulation[R]. LS-287: 2000. [13] Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248. [14] Stupakov G. Using the beam-echo effect for generation of short-wavelength radiation[J]. Physical Review Letters, 2009, 102: 074801. doi: 10.1103/PhysRevLett.102.074801 [15] Xiang D, Stupakov G. Tolerance study for the echo-enabled harmonic generation free electron laser[R]. SLAC-PUB-13644, 2009. [16] Hemsing E, Garcia B, Huang Z, et al. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure[J]. Physical Review Accelerators and Beams, 2017, 20: 060702. doi: 10.1103/PhysRevAccelBeams.20.060702 [17] Penn G. Intra-beam scattering for free electron lasers and its modeling in chicanes[EB/OL]. [2014-09].https://escholarship.org/uc/item/3jn7g33k. [18] Stupakov G. Effect of coulomb collisions on echo-enabled harmonic generation (EEHG)[C]//Proceedings of FEL 2011. Shanghai: 2011. [19] Stupakov G. Effect of coulomb collisions on echo-enabled harmonic generation[C]//Proceedings of FEL 2013. New York: 2013.