Study of diffuser’s start up property in chemical lasers
-
摘要: 为实现化学激光器的高速、低压尾气排入背压环境,需开展扩压器的启动特性研究。建立扩压器的仿真分析模型,根据激光器的实际工作需求,进行了扩压器总压11 kPa时的流场仿真,得到了不同背压情况下扩压器启动过程的流场,并提出扩压器逐级启动的工作方式。仿真结果显示,采用逐级启动的工作方式,扩压器以总压13 kPa启动直排入8 kPa的背景,流动稳定后将扩压器总压回调至11 kPa,实现了扩压器的正常启动。依托现有的激光器试车台进行了扩压器逐级启动的试验验证工作。试验结果表明,该种启动方式能够实现扩压器工作能力的提高。Abstract: To discharge the chemical laser’s high-speed and low-pressure gas into the background, the start-up pressure determines the recovery pressure of the diffuser. Base on the laser’s actual requirement, the transient modle of the diffuser is established, and the different background pressure’s flow field is obtained with the total pressure 11 kPa on the diffuser’s inlet. The result shows that the diffuser can’t set up successfully when the background pressure increased to 8 kPa. According to the result, a step setup mode is used, the diffuser start up with total pressure 13 kPa, when the flow field is steady, adjusting the inlet’s total pressure to 11 kPa, the diffuser starts up successfully. Experiment is carried out on the DF laser’s test-bed, the result shows that the diffuser’s ability is advanced.
-
Key words:
- chemical laser /
- diffuser /
- start-up /
- total pressure /
- background pressure
-
表 1 扩压器仿真参数
Table 1. Simulation parameters of the diffuser
total pressure/kPa static pressure/kPa total temperature/K background pressure/kPa 11 1.30 1500 8 13 1.54 1500 8 表 2 逐级启动扩压器仿真参数
Table 2. Simulation parameters of the step-start diffuser
time/ms total pressure/kPa static pressure/kPa total temperature/K background pressure/kPa 0 13 1.54 1500 8 30 11 1.30 1500 8 表 3 扩压器试验参数
Table 3. Experiment parameters of diffuser
No. total pressure/kPa static pressure/kPa total temperature/K background pressure/kPa 1 11 1.30 1500 6.9 2 11 1.30 1500 7.2 3 11 1.30 1500 8.0 4 13~11(300 ms) 1.54~1.30(300 ms) 1500 8.0 -
[1] 李金雪, 王杰, 颜飞雪, 等. DF化学激光器扩压器流场仿真及优化[J]. 强激光与粒子束, 2018, 30:101002. (Li Jinxue, Wang Jie, Yan Feixue, et al. Simulation and optimization of DF chemical lasers’ diffuser[J]. High Power Laser and Particle Beams, 2018, 30: 101002 doi: 10.11884/HPLPB201830.180113 [2] 李金雪, 颜飞雪, 王植杰. 可模拟不同背压环境的直排型扩压器装置[J]. 强激光与粒子束, 2020, 32:071003. (Li Jinxue, Yan Feixue, Wang Zhijie. Diffuser that can simulate different background pressure[J]. High Power Laser and Particle Beams, 2020, 32: 071003 doi: 10.11884/HPLPB202032.190474 [3] 符澄, 彭强, 刘卫红, 等. 光腔与扩压器化学反应流场优化数值模拟[J]. 强激光与粒子束, 2015, 27:111009. (Fu Cheng, Peng Qiang, Liu Weihong, et al. Numerical simulation of chemical reaction flow optimization in cavity and diffuser[J]. High Power Laser and Particle Beams, 2015, 27: 111009 doi: 10.11884/HPLPB201527.111009 [4] 李桦, 范晓樯, 丁猛. 超声速扩压器中激波串结构的数值模拟[J]. 国防科技大学学报, 2002, 24(1):18-21. (Li Hua, Fan Xiaoqiang, Ding Meng. Numerical simulatiom of the shock train structure in the supersonic diffuser[J]. Journal of National University of Defense Technology, 2002, 24(1): 18-21 doi: 10.3969/j.issn.1001-2486.2002.01.005 [5] 余真, 李守先, 陈栋泉. 喷管、光腔及压力恢复系统一体化设计[J]. 强激光与粒子束, 2007, 19(4):533-537. (Yu Zhen, Li Shouxian, Chen Dongquan. Integrative design of nozzle, cavity and pressure recovery system[J]. High Power Laser and Particle Beams, 2007, 19(4): 533-537 [6] 童华, 孙启志, 张绍武. 高超声速风洞扩压器试验研究与分析[J]. 实验流体力学, 2014, 28(3):78-81,103. (Tong Hua, Sun Qizhi, Zhang Shaowu. Investigation and analyse on the diffuser of hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 78-81,103 doi: 10.11729/syltlx20120201 [7] 符澄, 彭强, 刘卫红, 等. 光腔与扩压器的一体化优化数值模拟[J]. 强激光与粒子束, 2014, 26:111003. (Fu Cheng, Peng Qiang, Liu Weihong, et al. Integrative optimization numerical simulation of cavity and diffuser[J]. High Power Laser and Particle Beams, 2014, 26: 111003 doi: 10.11884/HPLPB201426.111003 [8] 蔡光明, 刘军, 王永振, 等. 二次喉道扩压器对COIL的影响实验[J]. 强激光与粒子束, 2005, 17(12):1807-1811. (Cai Guangming, Liu Jun, Wang Yongzhen, et al. Experimental study on influence of secondary-throat diffuser on COIL[J]. High Power Laser and Particle Beams, 2005, 17(12): 1807-1811 [9] 蔡光明, 刘军, 宋影松, 等. 竖直隔板对COIL超扩段流场影响实验研究[J]. 强激光与粒子束, 2003, 15(8):729-732. (Cai Guangming, Liu Jun, Song Yingsong, et al. Experimental research of the influence of the vertical vane on the flow-field of COIL diffuser[J]. High Power Laser and Particle Beams, 2003, 15(8): 729-732 [10] 黄知龙, 张国彪, 耿子海, 等. 氧碘化学激光器直线分段扩开型扩压器实验研究[J]. 强激光与粒子束, 2011, 23(5):1211-1214. (Huang Zhilong, Zhang Guobiao, Geng Zihai, et al. Performance of line-divergence subsection supersonic diffuser for COIL[J]. High Power Laser and Particle Beams, 2011, 23(5): 1211-1214 doi: 10.3788/HPLPB20112305.1211 [11] 黄知龙, 廖达雄, 张国彪. 附面层抽气扩压器实验研究[J]. 强激光与粒子束, 2006, 18(5):725-727. (Huang Zhilong, Liao Daxiong, Zhang Guobiao. Test research on performance of the boundary scoop pumping diffuser[J]. High Power Laser and Particle Beams, 2006, 18(5): 725-727 [12] 陈吉明, 任玉新. 压力恢复系统扩压器激波串现象的数值模拟[J]. 空气动力学学报, 2008, 26(3):304-309. (Chen Jiming, Ren Yuxin. Numerical simulation to the pseudo-shock of the supersonic diffuser in the pressure recovery system[J]. Acta Aerodynamica Sinica, 2008, 26(3): 304-309 doi: 10.3969/j.issn.0258-1825.2008.03.006 [13] 陈吉明, 彭强, 廖达雄. 压力恢复系统扩压器性能初步研究[J]. 强激光与粒子束, 2007, 19(8):1266-1270. (Chen Jiming, Peng Qiang, Liao Daxiong. Performance of supersonic diffuser in pressure recovery system[J]. High Power Laser and Particle Beams, 2007, 19(8): 1266-1270 [14] 闫宝珠, 袁圣付, 陆启生. 直排型DF/HF化学激光器扩压器喉道最佳长度实验研究[J]. 强激光与粒子束, 2009, 21(3):331-334. (Yan Baozhu, Yuan Shengfu, Lu Qisheng. Experimental investigation on optimal length of diffuser throat in directly drained CW DF/HF chemical laser[J]. High Power Laser and Particle Beams, 2009, 21(3): 331-334 [15] 徐万武. 高性能、大压缩比化学激光器压力恢复系统研究[D]. 长沙: 国防科学技术大学, 2003Xu Wanwu. Study of high performance, high compression ratio pressure recovery system for chemical laser[D]. Changsha: National University of Defense Technology, 2003 [16] 闫宝珠. 基区引射式连续波DF/HF化学激光器研究[D]. 长沙: 国防科学技术大学, 2009Yan Baozhu. Study on base-ejecting, continuous wave DF/HF chemical lasers[D]. Changsha: National University of Defense Technology, 2009 [17] Acebal R J. Vaned diffuser performance for chemical laser pressure recovery systems[C]//Proceedings of the International Conference on Lasers' 98.