留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学激光器扩压器启动特性研究

李金雪 任晓明 郭洲 邱雄飞

李金雪, 任晓明, 郭洲, 等. 化学激光器扩压器启动特性研究[J]. 强激光与粒子束, 2022, 34: 031008. doi: 10.11884/HPLPB202234.210273
引用本文: 李金雪, 任晓明, 郭洲, 等. 化学激光器扩压器启动特性研究[J]. 强激光与粒子束, 2022, 34: 031008. doi: 10.11884/HPLPB202234.210273
Li Jinxue, Ren Xiaoming, Guo Zhou, et al. Study of diffuser’s start up property in chemical lasers[J]. High Power Laser and Particle Beams, 2022, 34: 031008. doi: 10.11884/HPLPB202234.210273
Citation: Li Jinxue, Ren Xiaoming, Guo Zhou, et al. Study of diffuser’s start up property in chemical lasers[J]. High Power Laser and Particle Beams, 2022, 34: 031008. doi: 10.11884/HPLPB202234.210273

化学激光器扩压器启动特性研究

doi: 10.11884/HPLPB202234.210273
基金项目: 国家高技术研究发展计划项目(2015AA8063032)
详细信息
    作者简介:

    李金雪,ljxzyxzxg@163.com

  • 中图分类号: V228.7

Study of diffuser’s start up property in chemical lasers

  • 摘要: 为实现化学激光器的高速、低压尾气排入背压环境,需开展扩压器的启动特性研究。建立扩压器的仿真分析模型,根据激光器的实际工作需求,进行了扩压器总压11 kPa时的流场仿真,得到了不同背压情况下扩压器启动过程的流场,并提出扩压器逐级启动的工作方式。仿真结果显示,采用逐级启动的工作方式,扩压器以总压13 kPa启动直排入8 kPa的背景,流动稳定后将扩压器总压回调至11 kPa,实现了扩压器的正常启动。依托现有的激光器试车台进行了扩压器逐级启动的试验验证工作。试验结果表明,该种启动方式能够实现扩压器工作能力的提高。
  • 图  1  总压11 kPa扩压器内部马赫云图

    Figure  1.  Mach number contours of the diffuser with total pressure 11 kPa

    图  2  总压13 kPa扩压器内部马赫云图

    Figure  2.  Mach number contours of the diffuser with total pressure 13 kPa

    图  3  逐级启动扩压器内部马赫云图

    Figure  3.  Mach number contours of the diffuser with step-start diffuser

    图  4  扩压器压力传感器位置分布

    Figure  4.  Pressure sensors’ distribution of the diffuser

    图  5  扩压器实测压力曲线对比图

    Figure  5.  Pressure’s contract of the diffuser

    图  6  扩压器入口压力曲线图

    Figure  6.  Pressure’s curve of the diffuser’s inlet

    表  1  扩压器仿真参数

    Table  1.   Simulation parameters of the diffuser

    total pressure/kPastatic pressure/kPatotal temperature/Kbackground pressure/kPa
    111.3015008
    131.5415008
    下载: 导出CSV

    表  2  逐级启动扩压器仿真参数

    Table  2.   Simulation parameters of the step-start diffuser

    time/mstotal pressure/kPastatic pressure/kPatotal temperature/Kbackground pressure/kPa
    0131.5415008
    30111.3015008
    下载: 导出CSV

    表  3  扩压器试验参数

    Table  3.   Experiment parameters of diffuser

    No.total pressure/kPastatic pressure/kPatotal temperature/Kbackground pressure/kPa
    1111.3015006.9
    2111.3015007.2
    3111.3015008.0
    413~11(300 ms)1.54~1.30(300 ms)15008.0
    下载: 导出CSV
  • [1] 李金雪, 王杰, 颜飞雪, 等. DF化学激光器扩压器流场仿真及优化[J]. 强激光与粒子束, 2018, 30:101002. (Li Jinxue, Wang Jie, Yan Feixue, et al. Simulation and optimization of DF chemical lasers’ diffuser[J]. High Power Laser and Particle Beams, 2018, 30: 101002 doi: 10.11884/HPLPB201830.180113
    [2] 李金雪, 颜飞雪, 王植杰. 可模拟不同背压环境的直排型扩压器装置[J]. 强激光与粒子束, 2020, 32:071003. (Li Jinxue, Yan Feixue, Wang Zhijie. Diffuser that can simulate different background pressure[J]. High Power Laser and Particle Beams, 2020, 32: 071003 doi: 10.11884/HPLPB202032.190474
    [3] 符澄, 彭强, 刘卫红, 等. 光腔与扩压器化学反应流场优化数值模拟[J]. 强激光与粒子束, 2015, 27:111009. (Fu Cheng, Peng Qiang, Liu Weihong, et al. Numerical simulation of chemical reaction flow optimization in cavity and diffuser[J]. High Power Laser and Particle Beams, 2015, 27: 111009 doi: 10.11884/HPLPB201527.111009
    [4] 李桦, 范晓樯, 丁猛. 超声速扩压器中激波串结构的数值模拟[J]. 国防科技大学学报, 2002, 24(1):18-21. (Li Hua, Fan Xiaoqiang, Ding Meng. Numerical simulatiom of the shock train structure in the supersonic diffuser[J]. Journal of National University of Defense Technology, 2002, 24(1): 18-21 doi: 10.3969/j.issn.1001-2486.2002.01.005
    [5] 余真, 李守先, 陈栋泉. 喷管、光腔及压力恢复系统一体化设计[J]. 强激光与粒子束, 2007, 19(4):533-537. (Yu Zhen, Li Shouxian, Chen Dongquan. Integrative design of nozzle, cavity and pressure recovery system[J]. High Power Laser and Particle Beams, 2007, 19(4): 533-537
    [6] 童华, 孙启志, 张绍武. 高超声速风洞扩压器试验研究与分析[J]. 实验流体力学, 2014, 28(3):78-81,103. (Tong Hua, Sun Qizhi, Zhang Shaowu. Investigation and analyse on the diffuser of hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 78-81,103 doi: 10.11729/syltlx20120201
    [7] 符澄, 彭强, 刘卫红, 等. 光腔与扩压器的一体化优化数值模拟[J]. 强激光与粒子束, 2014, 26:111003. (Fu Cheng, Peng Qiang, Liu Weihong, et al. Integrative optimization numerical simulation of cavity and diffuser[J]. High Power Laser and Particle Beams, 2014, 26: 111003 doi: 10.11884/HPLPB201426.111003
    [8] 蔡光明, 刘军, 王永振, 等. 二次喉道扩压器对COIL的影响实验[J]. 强激光与粒子束, 2005, 17(12):1807-1811. (Cai Guangming, Liu Jun, Wang Yongzhen, et al. Experimental study on influence of secondary-throat diffuser on COIL[J]. High Power Laser and Particle Beams, 2005, 17(12): 1807-1811
    [9] 蔡光明, 刘军, 宋影松, 等. 竖直隔板对COIL超扩段流场影响实验研究[J]. 强激光与粒子束, 2003, 15(8):729-732. (Cai Guangming, Liu Jun, Song Yingsong, et al. Experimental research of the influence of the vertical vane on the flow-field of COIL diffuser[J]. High Power Laser and Particle Beams, 2003, 15(8): 729-732
    [10] 黄知龙, 张国彪, 耿子海, 等. 氧碘化学激光器直线分段扩开型扩压器实验研究[J]. 强激光与粒子束, 2011, 23(5):1211-1214. (Huang Zhilong, Zhang Guobiao, Geng Zihai, et al. Performance of line-divergence subsection supersonic diffuser for COIL[J]. High Power Laser and Particle Beams, 2011, 23(5): 1211-1214 doi: 10.3788/HPLPB20112305.1211
    [11] 黄知龙, 廖达雄, 张国彪. 附面层抽气扩压器实验研究[J]. 强激光与粒子束, 2006, 18(5):725-727. (Huang Zhilong, Liao Daxiong, Zhang Guobiao. Test research on performance of the boundary scoop pumping diffuser[J]. High Power Laser and Particle Beams, 2006, 18(5): 725-727
    [12] 陈吉明, 任玉新. 压力恢复系统扩压器激波串现象的数值模拟[J]. 空气动力学学报, 2008, 26(3):304-309. (Chen Jiming, Ren Yuxin. Numerical simulation to the pseudo-shock of the supersonic diffuser in the pressure recovery system[J]. Acta Aerodynamica Sinica, 2008, 26(3): 304-309 doi: 10.3969/j.issn.0258-1825.2008.03.006
    [13] 陈吉明, 彭强, 廖达雄. 压力恢复系统扩压器性能初步研究[J]. 强激光与粒子束, 2007, 19(8):1266-1270. (Chen Jiming, Peng Qiang, Liao Daxiong. Performance of supersonic diffuser in pressure recovery system[J]. High Power Laser and Particle Beams, 2007, 19(8): 1266-1270
    [14] 闫宝珠, 袁圣付, 陆启生. 直排型DF/HF化学激光器扩压器喉道最佳长度实验研究[J]. 强激光与粒子束, 2009, 21(3):331-334. (Yan Baozhu, Yuan Shengfu, Lu Qisheng. Experimental investigation on optimal length of diffuser throat in directly drained CW DF/HF chemical laser[J]. High Power Laser and Particle Beams, 2009, 21(3): 331-334
    [15] 徐万武. 高性能、大压缩比化学激光器压力恢复系统研究[D]. 长沙: 国防科学技术大学, 2003

    Xu Wanwu. Study of high performance, high compression ratio pressure recovery system for chemical laser[D]. Changsha: National University of Defense Technology, 2003
    [16] 闫宝珠. 基区引射式连续波DF/HF化学激光器研究[D]. 长沙: 国防科学技术大学, 2009

    Yan Baozhu. Study on base-ejecting, continuous wave DF/HF chemical lasers[D]. Changsha: National University of Defense Technology, 2009
    [17] Acebal R J. Vaned diffuser performance for chemical laser pressure recovery systems[C]//Proceedings of the International Conference on Lasers' 98.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1085
  • HTML全文浏览量:  358
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2022-02-10
  • 录用日期:  2022-02-18
  • 网络出版日期:  2022-02-22
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回