Simulation of generating attosecond water window band pulses by enhanced self-amplified spontaneous emission method
-
摘要: 脉冲宽度在百as(1 as=10−18 s)量级的X射线脉冲在超快科学领域有极为重要的作用。相较于目前世界上大部分运行在自发放大辐射模式的X射线自由电子激光(FEL),增强型自发放大辐射(ESASE)模式可以显著增加电子束的峰值流强,减小FEL的增益长度,可用来产生百as量级的超快X射线。基于典型的软X射线FEL参数,对ESASE方案的参数进行了模拟优化,得到了百as量级、功率可达1 GW以上、波长可在水窗波段且可调节的X射线脉冲,为后续开展ESASE实验及其实验参数的优化提供参考。Abstract: X-ray pulses of a few hundred attosecond play an important role in researches of ultra-fast science On enhanced self-amplified spontaneous emission (ESASE) mode. peak current of electron beams is much higher and the gain length is much shorter, in comparison with the self-amplified spontaneous emission mode in most running free electron laser (FEL) facilities. Based on typical parameters in soft X-ray free electron laser, this paper conducts an optimized simulation on ESASE. Simulation results show that hundreds attosecond X-ray of tunable wavelength in water window band is obtained, with a peak power of more than 1GW using a typical 2.5 GeV electron beam. This paper provides a reference to our following experiment on ESASE, and also sets a basis to the ongoing optimization of experimental parameters.
-
表 1 模拟用到的参数
Table 1. Parameters for simulation
initial beam parameters average energy/GeV 2.5 average current/A 800 energy spread/% 0.01 RMS of horizontal position/μm 10 RMS of horizontal momentum/(m·s−1) 1×10−6 modulative laser parameters wavelength/nm 2400 maximum electric field intensity/(GV·m−1) 5 FWHM/fs 8 wiggler & chicane parameters period/cm 16 period number 1 K 39.27 R56/mm 0.75 undulator parameters K 2.75 period/cm 3 period number 532 -
[1] Duris J, Li Siqi, Driver T, et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser[J]. Nature Photonics, 2020, 14(1): 30-36. doi: 10.1038/s41566-019-0549-5 [2] Corkum P B, Krausz F. Attosecond science[J]. Nature Physics, 2007, 3(6): 381-387. doi: 10.1038/nphys620 [3] Teichmann S M, Silva F, Cousin S L, et al. 0.5-keV soft X-ray attosecond continua[J]. Nature Communications, 2016, 7: 11493. doi: 10.1038/ncomms11493 [4] Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513. doi: 10.1038/35107000 [5] Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. doi: 10.1126/science.1157846 [6] Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518. doi: 10.1364/OE.25.027506 [7] Takahashi E J, Lan Pengfei, Mücke O D, et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses[J]. Nature Communications, 2013, 4: 2691. doi: 10.1038/ncomms3691 [8] Huang Zhirong, Kim K J. Review of X-ray free-electron laser theory[J]. Physical Review Special Topics—Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801 [9] Saldin E L, Schneidmiller E A, Yurkov M V. Statistical properties of radiation from VUV and X-ray free electron laser[J]. Optics Communications, 1998, 148(4/6): 383-403. [10] Zholents A A. Method of an enhanced self-amplified spontaneous emission for X-ray free electron lasers[J]. Physical Review Special Topics—Accelerators and Beams, 2005, 8: 040701. doi: 10.1103/PhysRevSTAB.8.040701 [11] Shim C H, Kim D E, Ko I S. Study of ESASE scheme with microbunching instability for generating attosecond-terawatt X-ray pulse in XFELs[C]//Proceedings of the 8th International Particle Accelerator Conference. 2017. [12] MacArthur J P, Duris J, Huang Zhirong, et al. High power sub-femtosecond X-ray pulse study for the LCLS[C]//Proceedings of IPAC 2017. 2017. [13] Carlson D R, Hutchison P, Hickstein D D, et al. Generating few-cycle pulses with integrated nonlinear photonics[J]. Optics Express, 2019, 27(26): 37374-37382. doi: 10.1364/OE.27.037374 [14] Zheng Qi, Chao Feng, Deng Haixiao, et al. Generating attosecond X-ray pulses through an angular dispersion enhanced self-amplified spontaneous emission free electron laser[J]. Physical Review Accelerators and Beams, 2018, 21: 120703. doi: 10.1103/PhysRevAccelBeams.21.120703 [15] Zeng Li, Feng Chao, Wang Xiaofan, et al. A super-fast free-electron laser simulation code for online optimization[J]. Photonics, 2020, 7(4): 1-12. doi: 10.3390/photonics7040117 [16] Borland M. ELEGANT: a flexible SDDS-compliant code for accelerator simulation[R]. Advanced Photon Source LS-287. US Department of Energy, 2000. [17] Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.