留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

产生超快水窗波段X射线的ESASE方案模拟

涂凌君 冯超 王晓凡 赵振堂

涂凌君, 冯超, 王晓凡, 等. 产生超快水窗波段X射线的ESASE方案模拟[J]. 强激光与粒子束, 2022, 34: 031019. doi: 10.11884/HPLPB202234.210282
引用本文: 涂凌君, 冯超, 王晓凡, 等. 产生超快水窗波段X射线的ESASE方案模拟[J]. 强激光与粒子束, 2022, 34: 031019. doi: 10.11884/HPLPB202234.210282
Tu Lingjun, Feng Chao, Wang Xiaofan, et al. Simulation of generating attosecond water window band pulses by enhanced self-amplified spontaneous emission method[J]. High Power Laser and Particle Beams, 2022, 34: 031019. doi: 10.11884/HPLPB202234.210282
Citation: Tu Lingjun, Feng Chao, Wang Xiaofan, et al. Simulation of generating attosecond water window band pulses by enhanced self-amplified spontaneous emission method[J]. High Power Laser and Particle Beams, 2022, 34: 031019. doi: 10.11884/HPLPB202234.210282

产生超快水窗波段X射线的ESASE方案模拟

doi: 10.11884/HPLPB202234.210282
基金项目: 国家自然科学基金项目(11975300, 11775294, 11905275)
详细信息
    作者简介:

    涂凌君,lingjuntu@foxmail.com

    通讯作者:

    冯 超,fengchao@zjlab.org.cn

  • 中图分类号: TL99

Simulation of generating attosecond water window band pulses by enhanced self-amplified spontaneous emission method

  • 摘要: 脉冲宽度在百as(1 as=10−18 s)量级的X射线脉冲在超快科学领域有极为重要的作用。相较于目前世界上大部分运行在自发放大辐射模式的X射线自由电子激光(FEL),增强型自发放大辐射(ESASE)模式可以显著增加电子束的峰值流强,减小FEL的增益长度,可用来产生百as量级的超快X射线。基于典型的软X射线FEL参数,对ESASE方案的参数进行了模拟优化,得到了百as量级、功率可达1 GW以上、波长可在水窗波段且可调节的X射线脉冲,为后续开展ESASE实验及其实验参数的优化提供参考。
  • 图  1  ESASE示意图

    Figure  1.  Scheme of enhanced self-amplified spontaneous emission (ESASE)

    图  2  电子束经能量调制与密度调制后的能量分布

    Figure  2.  Energy distribution of electron beam after modulation

    图  3  电子束能量调制与密度调制结果后的流强和能散分布

    Figure  3.  Current profile and energy spread at 11.3 m undulator

    图  4  辐射段增益过程

    Figure  4.  Gain process in the radiator

    图  5  波荡器11.3 m处电子束能散和激光形状

    Figure  5.  Energy spread distribution and FEL pulse profile at 11.3 m undulator

    表  1  模拟用到的参数

    Table  1.   Parameters for simulation

    initial beam parameters
    average energy/GeV 2.5
    average current/A 800
    energy spread/% 0.01
    RMS of horizontal position/μm 10
    RMS of horizontal momentum/(m·s−1) 1×10−6
    modulative laser parameters
    wavelength/nm 2400
    maximum electric field intensity/(GV·m−1) 5
    FWHM/fs 8
    wiggler & chicane parameters
    period/cm 16
    period number 1
    K 39.27
    R56/mm 0.75
    undulator parameters
    K 2.75
    period/cm 3
    period number 532
    下载: 导出CSV
  • [1] Duris J, Li Siqi, Driver T, et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser[J]. Nature Photonics, 2020, 14(1): 30-36. doi: 10.1038/s41566-019-0549-5
    [2] Corkum P B, Krausz F. Attosecond science[J]. Nature Physics, 2007, 3(6): 381-387. doi: 10.1038/nphys620
    [3] Teichmann S M, Silva F, Cousin S L, et al. 0.5-keV soft X-ray attosecond continua[J]. Nature Communications, 2016, 7: 11493. doi: 10.1038/ncomms11493
    [4] Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513. doi: 10.1038/35107000
    [5] Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. doi: 10.1126/science.1157846
    [6] Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518. doi: 10.1364/OE.25.027506
    [7] Takahashi E J, Lan Pengfei, Mücke O D, et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses[J]. Nature Communications, 2013, 4: 2691. doi: 10.1038/ncomms3691
    [8] Huang Zhirong, Kim K J. Review of X-ray free-electron laser theory[J]. Physical Review Special Topics—Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801
    [9] Saldin E L, Schneidmiller E A, Yurkov M V. Statistical properties of radiation from VUV and X-ray free electron laser[J]. Optics Communications, 1998, 148(4/6): 383-403.
    [10] Zholents A A. Method of an enhanced self-amplified spontaneous emission for X-ray free electron lasers[J]. Physical Review Special Topics—Accelerators and Beams, 2005, 8: 040701. doi: 10.1103/PhysRevSTAB.8.040701
    [11] Shim C H, Kim D E, Ko I S. Study of ESASE scheme with microbunching instability for generating attosecond-terawatt X-ray pulse in XFELs[C]//Proceedings of the 8th International Particle Accelerator Conference. 2017.
    [12] MacArthur J P, Duris J, Huang Zhirong, et al. High power sub-femtosecond X-ray pulse study for the LCLS[C]//Proceedings of IPAC 2017. 2017.
    [13] Carlson D R, Hutchison P, Hickstein D D, et al. Generating few-cycle pulses with integrated nonlinear photonics[J]. Optics Express, 2019, 27(26): 37374-37382. doi: 10.1364/OE.27.037374
    [14] Zheng Qi, Chao Feng, Deng Haixiao, et al. Generating attosecond X-ray pulses through an angular dispersion enhanced self-amplified spontaneous emission free electron laser[J]. Physical Review Accelerators and Beams, 2018, 21: 120703. doi: 10.1103/PhysRevAccelBeams.21.120703
    [15] Zeng Li, Feng Chao, Wang Xiaofan, et al. A super-fast free-electron laser simulation code for online optimization[J]. Photonics, 2020, 7(4): 1-12. doi: 10.3390/photonics7040117
    [16] Borland M. ELEGANT: a flexible SDDS-compliant code for accelerator simulation[R]. Advanced Photon Source LS-287. US Department of Energy, 2000.
    [17] Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1457
  • HTML全文浏览量:  532
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 修回日期:  2021-08-27
  • 网络出版日期:  2021-10-09
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回