留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光毛化技术的5052铝合金粘接试验研究

徐艳龙 李文戈 喻忠翰 赵远涛 高峰 谢烯炼

徐艳龙, 李文戈, 喻忠翰, 等. 基于激光毛化技术的5052铝合金粘接试验研究[J]. 强激光与粒子束, 2022, 34: 031010. doi: 10.11884/HPLPB202234.210283
引用本文: 徐艳龙, 李文戈, 喻忠翰, 等. 基于激光毛化技术的5052铝合金粘接试验研究[J]. 强激光与粒子束, 2022, 34: 031010. doi: 10.11884/HPLPB202234.210283
Xu Yanlong, Li Wenge, Yu Zhonghan, et al. Research on bonding test of 5052 aluminum alloy based on laser texturing technology[J]. High Power Laser and Particle Beams, 2022, 34: 031010. doi: 10.11884/HPLPB202234.210283
Citation: Xu Yanlong, Li Wenge, Yu Zhonghan, et al. Research on bonding test of 5052 aluminum alloy based on laser texturing technology[J]. High Power Laser and Particle Beams, 2022, 34: 031010. doi: 10.11884/HPLPB202234.210283

基于激光毛化技术的5052铝合金粘接试验研究

doi: 10.11884/HPLPB202234.210283
基金项目: 国家自然科学基金项目(52072236,52002242)
详细信息
    作者简介:

    徐艳龙,lyxu@shmtu.edu.cn

    通讯作者:

    李文戈,wgli@shmtu.edu.cn

  • 中图分类号: TN249

Research on bonding test of 5052 aluminum alloy based on laser texturing technology

  • 摘要: 为了提高5052铝合金的粘接性能,利用脉冲光纤激光的短脉冲和高峰值功率的特性,对铝合金试件进行了激光毛化试验研究。通过正交实验法,研究了平均功率、扫描速度、脉冲频率和脉冲宽度等工艺参数对激光毛化质量的影响,以及各工艺参数的影响权重,并求得最佳工艺参数,最佳工艺参数为平均功率90 W、扫描速度10 mm/s、脉冲频率1000 kHz、脉冲宽度200 ns。根据优化后的工艺参数,加工获得了粗糙度2.35 μm,然后对激光毛化后的铝合金试件进行单搭接拉伸试验,研究发现粘接强度随着粗糙度的增大而增大,当粗糙度到达一定程度时,粘接强度反而会随着粗糙度的增大而减小。另外,粘接强度还跟铝合金表面的微织构的类型及疏密程度都有很大关系。
  • 图  1  激光毛化原理图

    Figure  1.  Schematic diagram of laser texturing

    图  2  激光毛化试验平台

    Figure  2.  Laser texturing test platform

    图  3  金相显微镜形貌图

    Figure  3.  Topography observed by metallurgical microscope

    图  4  SEM微观形貌图

    Figure  4.  Micro-topography images observed by SEM

    图  5  试件尺寸

    Figure  5.  Size of specimen

    图  6  表面粗糙度与拉伸剪切强度对照图

    Figure  6.  Comparison diagram of surface roughness and tensile shear strength

    表  1  因素水平表

    Table  1.   Factor level table

    levelpower/Wscan speed/(mm·s−1)frequency/kHzpulse width/ns
    1 30 10 500 100
    2 60 20 1000 200
    3 90 30 1500 300
    下载: 导出CSV

    表  2  正交试验设计及结果

    Table  2.   Orthogonal experimental design and results

    numberpower/Wscan speed/(mm·s−1)frequency/kHzpulse width /nssurface roughness/μm
    1 30 10 500 100 0.661
    2 30 20 1000 200 0.383
    3 30 30 1500 300 0.413
    4 60 10 1000 300 1.540
    5 60 20 1500 100 0.394
    6 60 30 500 200 0.836
    7 90 10 1500 200 2.270
    8 90 20 500 300 1.221
    9 90 30 1000 100 1.810
    下载: 导出CSV

    表  3  极差分析

    Table  3.   Range analysis

    projectsurface roughness/μm
    power Ascan speed Bfrequency Cpulse width D
    K1 0.486 1.490 0.906 0.955
    K2 0.923 0.666 1.244 1.163
    K3 1.767 1.020 1.026 1.058
    range 1.283 0.824 0.338 0.208
    下载: 导出CSV

    表  4  3种方式下的粗糙度值

    Table  4.   Roughness value of three types

    samplessurface roughness/μm
    no treatment 0.38
    80# sandpaper polishing 3.2
    optimal parameter laser texturing 2.35
    下载: 导出CSV

    表  5  5052铝合金力学性能参数

    Table  5.   Mechanical properties of 5052 aluminum alloy

    density /(g·cm−3)elastic modulus /GPaPoisson’s ratioyield strength/MPa
    2.68 69 0.32 65
    下载: 导出CSV

    表  6  胶粘剂材料参数

    Table  6.   Material parameters of adhesive

    componentcuring temperature/℃density/(kg·m−3)curing time/minPoisson’s ratio
    J-69F1 epoxy resin 130 1200 75 0.12
    下载: 导出CSV

    表  7  拉伸剪切试验

    Table  7.   Tensile shear test

    samplesnumberfailure load/Ntensile shear strength/MPaaverage tensile shear strength/MPa
    no treatment 1 6033.89 14.7 14.12
    2 5805.84 14.3
    3 5869.37 14.2
    4 5785.77 13.8
    5 5937.81 13.6
    80# sandpaper polishing 1 7269.78 21.77 20.88
    2 5922.89 19.42
    3 6877.25 21.16
    4 7333.92 22.04
    5 6237.23 20.03
    optimal parameter
    laser texturing
    1 8726.94 24.39 24.72
    2 8108.42 24.94
    3 8242.04 25.17
    4 7625.57 23.46
    5 8363.43 25.62
    下载: 导出CSV
  • [1] 朱民. 碳达峰碳中和必将重构中国经济[N]. 联合时报, 2021-05-11(006)

    Zhu Min. China’s economy will be restructured with carbon peaking and carbon neutraling[N]. United Times, 2021-05-11(006)
    [2] 慕文龙. 湿热-力耦合作用对CFRP/铝合金粘接接头力学性能的影响[D]. 长春: 吉林大学, 2020

    Mu Wenlong. Effect of hygrothermal-loads coupling on the mechanical properties of adhesively bonded CFRP/aluminum alloy joints[D]. Changchun: Jilin University, 2020
    [3] Liedl G, Bielak R, Ivanova J, et al. Joining of aluminum and steel in car body manufacturing[J]. Physics Procedia, 2011, 12: 150-156. doi: 10.1016/j.phpro.2011.03.019
    [4] 石玗, 梁琪, 张刚, 等. 激光毛化对铝/钢电弧熔钎焊接头界面与性能的影响[J]. 焊接学报, 2020, 41(5):25-29. (Shi Yu, Liang Qi, Zhang Gang, et al. Effect of laser texturing on the interface and properties of aluminum/steel arc fusion brazed joints[J]. Transactions of the China Welding Institution, 2020, 41(5): 25-29 doi: 10.12073/j.hjxb.20190916002
    [5] 陈晓辉, 钟志平, 陆辛. 车用铝合金连接技术的研究进展与应用[J]. 热加工工艺, 2016, 45(11):5-8. (Chen Xiaohui, Zhong Zhiping, Lu Xin. Research progress and application of joining technology of aluminum alloy for automobile[J]. Hot Working Technology, 2016, 45(11): 5-8
    [6] 李波, 袁挺, 方基永. 车用铝合金结构胶应用研究[J]. 中国胶粘剂, 2020, 29(11):52-55. (Li Bo, Yuan Ting, Fang Jiyong. Study on application of structural adhesive for automotive aluminum alloy[J]. China Adhesives, 2020, 29(11): 52-55
    [7] 崔俊佳, 梁伟, 李光耀. AA5182铝合金胶接接头动态剪切性能研究[J]. 塑性工程学报, 2020, 27(10):185-191. (Cui Junjia, Liang Wei, Li Guangyao. Study on dynamic shear properties of AA5182 aluminum alloy adhesive joint[J]. Journal of Plasticity Engineering, 2020, 27(10): 185-191 doi: 10.3969/j.issn.1007-2012.2020.10.026
    [8] 张昱龙. 激光表面处理对金属/复合材料粘接界面的影响研究[D]. 大连: 大连理工大学, 2020

    Zhang Yulong. The influences of laser surface treatment on the bonding interface of metal/composites[D]. Dalian: Dalian University of Technology, 2020
    [9] 陈爔, 王菲, 吴琼, 等. 3A21铝合金表面激光毛化坑点形貌演变规律[J]. 激光与光电子学进展, 2019, 56:241404. (Chen Xi, Wang Fei, Wu Qiong, et al. Pit morphology evolution law of 3A21 aluminum alloy surface in laser texturing[J]. Laser & Optoelectronics Progress, 2019, 56: 241404
    [10] Dunn A, Carstensen J V, Wlodarczyk K L, et al. Nanosecond laser texturing for high friction applications[J]. Optics and Lasers in Engineering, 2014, 62: 9-16. doi: 10.1016/j.optlaseng.2014.05.003
    [11] Bonse J, Kirner S V, Griepentrog M, et al. Femtosecond laser texturing of surfaces for tribological applications[J]. Materials, 2018, 11: 801. doi: 10.3390/ma11050801
    [12] Guo J D, Li Y, Lu H L, et al. An effective method of edge deburring for laser surface texturing of Co-Cr-Mo alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1): 1491-1503.
    [13] 蔡颂, 陈根余, 周聪, 等. 单脉冲激光烧蚀青铜砂轮等离子体物理模型研究[J]. 光学学报, 2017, 37:0414001. (Cai Song, Chen Genyu, Zhou Cong, et al. Research of plasma physical model for single pulsed laser ablation of bronze-bond grinding wheel[J]. Acta Optica Sinica, 2017, 37: 0414001 doi: 10.3788/AOS201737.0414001
    [14] 蔡春波, 吉泽升, 王国军, 等. 激光毛化对3003铝合金织构及性能的影响[J]. 材料热处理学报, 2009, 30(3):111-114. (Cai Chunbo, Ji Zesheng, Wang Guojun et al. Effect of laser-texturing of cold roll on texture and mechanical properties of 3003 aluminiam alloy[J]. Transactions of Materials and Heat Treatment, 2009, 30(3): 111-114
    [15] 杨文锋, 侯秋园, 李绍龙, 等. 民机铝合金蒙皮的激光织构化处理[J]. 电镀与涂饰, 2020, 39(8):492-498. (Yang Wenfeng, Hou Qiuyuan, Li Shaolong, et al. Laser texturing of aluminum alloy used as civil aircraft skin[J]. Electroplating & Finishing, 2020, 39(8): 492-498
    [16] Won S J, Kim H S. Effects of laser parameters on morphological change and surface properties of aluminum alloy in masked laser surface texturing[J]. Journal of Manufacturing Processes, 2019, 48: 260-269. doi: 10.1016/j.jmapro.2019.10.034
    [17] Kuznetsov G V, Feoktistov D V, Orlova E G, et al. Droplet state and mechanism of contact line movement on laser-textured aluminum alloy surfaces[J]. Journal of Colloid and Interface Science, 2019, 553: 557-566. doi: 10.1016/j.jcis.2019.06.059
    [18] Zhou Xikang, Xue Wei, Liu Wenwen, et al. Quadri-directionally anisotropic droplets sliding surfaces fabricated by selective laser texturing of aluminum alloy plates[J]. Applied Surface Science, 2020, 509: 145406. doi: 10.1016/j.apsusc.2020.145406
    [19] 邹国文. 激光毛化形貌成形机理的数值模拟与实验研究[D]. 镇江: 江苏大学, 2018

    Zou Guowen. Numerical simulation and experimental research on formation mechanism of laser texturing topography[D]. Zhenjiang: Jiangsu University, 2018
    [20] 陆建, 倪晓武, 贺安之. 激光与材料相互作用物理学[M]. 北京: 机械工业出版社, 1996

    Lu Jian, Ni Xiaowu, He Anzhi. Physics of laser-material interaction[M]. Beijing: China Machine Press, 1996
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  1491
  • HTML全文浏览量:  348
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-03
  • 修回日期:  2022-02-28
  • 网络出版日期:  2022-03-03
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回