留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

回声谐波放大型自由电子激光相干涡旋X射线产生方案

孙昊 冯超 刘波

孙昊, 冯超, 刘波. 回声谐波放大型自由电子激光相干涡旋X射线产生方案[J]. 强激光与粒子束, 2022, 34: 031020. doi: 10.11884/HPLPB202234.210285
引用本文: 孙昊, 冯超, 刘波. 回声谐波放大型自由电子激光相干涡旋X射线产生方案[J]. 强激光与粒子束, 2022, 34: 031020. doi: 10.11884/HPLPB202234.210285
Sun Hao, Feng Chao, Liu Bo. Coherent X-ray vortex generation based on echo-enabled harmonic generation free electron laser[J]. High Power Laser and Particle Beams, 2022, 34: 031020. doi: 10.11884/HPLPB202234.210285
Citation: Sun Hao, Feng Chao, Liu Bo. Coherent X-ray vortex generation based on echo-enabled harmonic generation free electron laser[J]. High Power Laser and Particle Beams, 2022, 34: 031020. doi: 10.11884/HPLPB202234.210285

回声谐波放大型自由电子激光相干涡旋X射线产生方案

doi: 10.11884/HPLPB202234.210285
基金项目: 国家自然科学基金项目(12122514,11975300)
详细信息
    作者简介:

    孙 昊,sunahao@sinap.ac.cn

    通讯作者:

    冯 超,fengchao@zjlab.org.cn

  • 中图分类号: TL99

Coherent X-ray vortex generation based on echo-enabled harmonic generation free electron laser

  • 摘要: 外种子型自由电子激光具有全相干、频谱稳定、极高亮度的优点,可以实现在超小空间和超快时间尺度下对物质结构的研究。具有特殊横向相位模式的光特别是具有螺旋相位的带轨道角动量的涡旋光已经在众多科学领域有了应用,基于自由电子激光原理产生的辐射横向模式基本上为简单的高斯模式,为产生具有横向螺旋相位的相干涡旋X射线,对基于回声谐波放大型(EEHG)自由电子激光产生涡旋光方案进行了深入研究,并且根据上海软X射线自由电子激光装置(SXFEL)的参数,进行了相关方案设计和模拟研究。三维模拟结果表明,外种子型EEHG自由电子激光可以产生峰值功率可达到GW量级的相干涡旋软X射线。
  • 图  1  EEHG示意图

    Figure  1.  Scheme of EEHG

    图  2  基于EEHG的涡旋光产生方案示意图

    Figure  2.  The vortex generation scheme based on EEHG

    图  3  电子束相空间结构变化

    Figure  3.  The evolution of the electron beam phase space

    图  4  第二色散段出口处电子束团的螺旋群聚因子分布

    Figure  4.  Helical bunching distribution along the electron beam at the exit of the second dispersion section

    图  5  波荡器中FEL辐射变化

    Figure  5.  The evolution of the FEL radiation in radiator

    图  6  沿辐射段波荡器的群聚因子变化曲线

    Figure  6.  The evolution of the bunching factor along the radiator

    图  7  微聚束横向分布相位

    Figure  7.  The transverse phase distribution of the microbunching

    表  1  模拟参数

    Table  1.   Parameters for simulation

    energy/GeVpeak current/Aenergy spread/keVlaser wavelength/nmlaser power_1/MWlaser power_2/MW
    1.61500160266200200
    modulator length_1/mmodulator length_2/mR56_1/mR56_2/mFEL wavelength/nmradiator period/m
    110.00340.00009370.055
    下载: 导出CSV
  • [1] Huang Zhirong, Kim K J. Review of X-ray free-electron laser theory[J]. Physical Review Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801
    [2] Saldin E L, Schneidmiller E A, Yurkov M V. Statistical properties of radiation from VUV and X-ray free electron laser[J]. Optics Communications, 1998, 148(4/6): 383-403.
    [3] Stupakov G. Using the beam-echo effect for generation of short-wavelength radiation[J]. Physical Review Letters, 2009, 102: 074801. doi: 10.1103/PhysRevLett.102.074801
    [4] Yu L H. Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers[J]. Physical Review A, 1991, 44(8): 5178-5193. doi: 10.1103/PhysRevA.44.5178
    [5] Feng Chao, Deng Haixiao, Zhang Meng, et al. Coherent extreme ultraviolet free-electron laser with echo-enabled harmonic generation[J]. Physical Review Accelerators and Beams, 2019, 22(5): 050703. doi: 10.1103/PhysRevAccelBeams.22.050703
    [6] Ribič P R, Abrami A, Badano L, et al. Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser[J]. Nature Photonics, 2019, 13(8): 555-561. doi: 10.1038/s41566-019-0427-1
    [7] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [8] Franke‐Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299-313.
    [9] Kuga T, Torii Y, Shiokawa N, et al. Novel optical trap of atoms with a doughnut beam[J]. Physical Review Letters, 1997, 78(25): 4713-4716. doi: 10.1103/PhysRevLett.78.4713
    [10] Jack B, Leach J, Romero J, et al. Holographic ghost imaging and the violation of a Bell inequality[J]. Physical Review Letters, 2009, 103: 083602. doi: 10.1103/PhysRevLett.103.083602
    [11] Shigematsu K, Yamane K, Morita R, et al. Coherent dynamics of exciton orbital angular momentum transferred by optical vortex pulses[J]. Physical Review B, 2016, 93: 045205. doi: 10.1103/PhysRevB.93.045205
    [12] Liu Baiyang, Cui Yuehui, Li Ronglin. A broadband dual-polarized dual-OAM-mode antenna array for OAM communication[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 16: 744-747.
    [13] van Veenendaal M. Interaction between X-ray and magnetic vortices[J]. Physical Review B, 2015, 92: 245116. doi: 10.1103/PhysRevB.92.245116
    [14] Jüstel D, Friesecke G, James R D. Bragg–von Laue diffraction generalized to twisted X-rays[J]. Acta Crystallographica Section A:Foundations and Advances, 2016, 72(2): 190-196. doi: 10.1107/S2053273315024390
    [15] van Veenendaal M, McNulty I. Prediction of strong dichroism induced by X rays carrying orbital momentum[J]. Physical Review Letters, 2007, 98: 157401. doi: 10.1103/PhysRevLett.98.157401
    [16] Ye L, Rouxel J R, Asban S, et al. Probing molecular chirality by orbital-angular-momentum-carrying X-ray pulses[J]. Journal of Chemical Theory and Computation, 2019, 15(7): 4180-4186. doi: 10.1021/acs.jctc.9b00346
    [17] Kotlyar V V, Almazov A A, Khonina S N, et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J]. Journal of the Optical Society of America A, 2005, 22(5): 849-861. doi: 10.1364/JOSAA.22.000849
    [18] Beijersbergen M W, Allen L, Van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1/3): 123-132.
    [19] Terhalle B, Langner A, Päivänranta B, et al. Generation of extreme ultraviolet vortex beams using computer generated holograms[J]. Optics Letters, 2011, 36(21): 4143-4145. doi: 10.1364/OL.36.004143
    [20] Sasaki S, McNulty I, Dejus R. Undulator radiation carrying spin and orbital angular momentum[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 582(1): 43-46.
    [21] Ribič P R, Gauthier D, De Ninno G. Generation of coherent extreme-ultraviolet radiation carrying orbital angular momentum[J]. Physical Review Letters, 2014, 112: 203602. doi: 10.1103/PhysRevLett.112.203602
    [22] Hemsing E, Marinelli A. Echo-enabled X-ray vortex generation[J]. Physical Review Letters, 2012, 109: 224801. doi: 10.1103/PhysRevLett.109.224801
    [23] Zhao Zhentang, Wang Dong, Gu Qiang, et al. Status of the SXFEL facility[J]. Applied Sciences, 2017, 7: 607. doi: 10.3390/app7060607
    [24] Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1697
  • HTML全文浏览量:  436
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-12-08
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回