留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单波长泵浦双光子吸收铷蒸汽激光器理论分析

季艳慧 何洋 劳国超 万浩华 陈飞

季艳慧, 何洋, 劳国超, 等. 单波长泵浦双光子吸收铷蒸汽激光器理论分析[J]. 强激光与粒子束, 2022, 34: 031006. doi: 10.11884/HPLPB202234.210290
引用本文: 季艳慧, 何洋, 劳国超, 等. 单波长泵浦双光子吸收铷蒸汽激光器理论分析[J]. 强激光与粒子束, 2022, 34: 031006. doi: 10.11884/HPLPB202234.210290
Ji Yanhui, He Yang, Lao Guochao, et al. Analysis on performance of two-photon Rb vapor laser[J]. High Power Laser and Particle Beams, 2022, 34: 031006. doi: 10.11884/HPLPB202234.210290
Citation: Ji Yanhui, He Yang, Lao Guochao, et al. Analysis on performance of two-photon Rb vapor laser[J]. High Power Laser and Particle Beams, 2022, 34: 031006. doi: 10.11884/HPLPB202234.210290

单波长泵浦双光子吸收铷蒸汽激光器理论分析

doi: 10.11884/HPLPB202234.210290
基金项目: 国家自然科学基金项目(61975203,62005274); 激光与物质相互作用国家重点实验室开放基金项目(SKLLIM2012)
详细信息
    作者简介:

    季艳慧,jiyanhui18@mails.ucas.ac.cn

    通讯作者:

    陈 飞,feichenny@126.com

  • 中图分类号: TN248.2

Analysis on performance of two-photon Rb vapor laser

  • 摘要: 双光子吸收碱金属蒸汽激光器(TPAL)在基础研究和国防工程中有重要的应用前景,近些年来已成为激光领域研究热点之一,但TPAL还缺少相关的理论模型。因此,本文基于碱金属原子的双光子吸收能级跃迁过程构建速率方程,并建立了TPAL理论模型,研究了单波长泵浦双光子吸收铷蒸汽激光器(Rb-TPAL)的工作特性,分析了泵浦光束腰位置、蒸汽池温度以及泵浦功率对Rb-TPAL蓝光输出特性的影响。结果表明,通过优化泵浦光束腰位置和蒸汽池温度,在高功率泵浦情况下,Rb-TPAL可获得高功率蓝光激光输出。
  • 图  1  铷原子能级跃迁图

    Figure  1.  Energy levels of Rb atom

    图  2  Rb-TPAL系统示意图

    Figure  2.  Schematic of Rb-TPAL system

    图  3  蓝光输出功率随泵浦光束腰位置变化

    Figure  3.  Output power of blue laser as function of the position of waist

    图  4  泵浦功率与蒸汽池内温度对输出功率和蒸汽池内增益系数的影响

    Figure  4.  Influence of pump power and temperature on output power and gain coefficient in the vapor cell

    图  5  泵浦功率对输出功率的影响以及蒸汽池内剩余功率和粒子数密度分布

    Figure  5.  Output power as function of input power and distribution of residual power and population densities in the vapor cell at steady state

    表  1  模型中使用参数

    Table  1.   Parameters used in the model

    two-photon
    absorption cross
    section σTPT/(cm4/W)
    stimulated
    absorption cross
    section σ13
    pump central
    wavelength
    λp/nm
    laser central
    wavelength
    λL/nm
    62P3/2–52S1/2
    spontaneous
    emission rate A21
    52D5/2–52S1/2
    spontaneous
    emission rate A31/s
    52D5/2–62P3/2
    spontaneous
    emission rate A32/s
    1.4×10−19[15]defined IP×σTPT778.14202.81×106 s4.31×106 1.43×106
    下载: 导出CSV
  • [1] Shimoda R, Sakata Y, Fujise T, et al. The adenoma miss rate of blue-laser imaging vs white-light imaging during colonoscopy: A randomized tandem trial[J]. Endoscopy, 2017, 49(2): 186-190.
    [2] 汪鑫, 杜辉, 王兆港, 等. 基于激光光源的4K超高清 DLP 投影光学引擎的设计[J]. 光学与光电技术, 2017, 15(2):14-19. (Wang Xin, Du Hui, Wang Zhaogang, et al. Design of 4K UHD DLP optical engine based on laser light source[J]. Optics & Optoelectronic Technology, 2017, 15(2): 14-19
    [3] Chen M F, Ho Y S, Chung C K, et al. Examination of the developed scanning system for red-green-blue laser projector with a feedback control[J]. Optical Review, 2011, 18(1): 128-131. doi: 10.1007/s10043-011-0008-0
    [4] Ye J, Kimble H J, Katori H. Quantum state engineering and precision metrology using state-insensitive light traps[J]. Science, 2008, 320(5884): 1734-1738. doi: 10.1126/science.1148259
    [5] Boyer V, Marino A M, Pooser R C, et al. Entangled images from four-wave mixing[J]. Science, 2008, 321(5888): 544-547. doi: 10.1126/science.1158275
    [6] Radnaev A G, Dudin Y O, Zhao R, et al. A quantum memory with telecom-wavelength conversion[J]. Nature Physics, 2010, 6(11): 894-899. doi: 10.1038/nphys1773
    [7] Abella I D. Optical double-photon absorption in cesium vapor[J]. Physical Review Letters, 1962, 9(11): 453-455. doi: 10.1103/PhysRevLett.9.453
    [8] Hartig W. Two-photon resonant four-wave mixing in atomic sodium vapour[J]. Applied Physics, 1978, 15(4): 427-432. doi: 10.1007/BF00886163
    [9] Vernier A, Franke-Arnold S, Riis E, et al. Enhanced frequency up-conversion in Rb vapor[J]. Optics Express, 2010, 18(16): 17020-17026. doi: 10.1364/OE.18.017020
    [10] Sell J F, Gearba M A, DePaola B D, et al. Collimated blue and infrared beams generated by two-photon excitation in Rb vapor[J]. Optics Letters, 2014, 39(3): 528-531. doi: 10.1364/OL.39.000528
    [11] Brekke E, Potier S. Optical cavity for enhanced parametric four-wave mixing in rubidium[J]. Applied Optics, 2017, 56(1): 46-49. doi: 10.1364/AO.56.000046
    [12] 曹睿. 双光子泵浦碱金属蓝光研究[D]. 长春理工大学: 2015

    Cao Rui. Experimental research on two-photon pumped alkali metal blue light[D]. Changchun University of Science and Technology, 2015
    [13] Gai B, Cao R, Xia X, et al. Modulation of a double-line frequency up-conversion process in cesium vapor[J]. Applied Physics B, 2016, 122(6): 1-7.
    [14] Yuan J, Liu H, Wang L, et al. Coherent 420 nm light generated by the cavity-enhanced four-wave mixing process in Rb vapor[J]. Optics Express, 2021, 29(4): 4858-4865. doi: 10.1364/OE.416307
    [15] Yu H, Chen F, He Y, et al. Theoretical modeling and analysis on the absorption cross section of the two-photon excitation in Rb[J]. Optics express, 2018, 26(13): 17254-17263.
    [16] Yu H, Chen F, Pan Q, et al. Modeling and analysis of the pumping threshold characteristics in one-color two-photon excited Cs vapor[J]. IEEE Journal of Quantum Electronics, 2019, 56(2): 1-6.
    [17] Akulshin A M, Budker D, McLean R J. Parametric wave mixing enhanced by velocity-insensitive two-photon excitation in Rb vapor[J]. Journal of the Optical Society of America B, 2017, 34(5): 1016-1022. doi: 10.1364/JOSAB.34.001016
    [18] Offer R F, Conway J W C, Riis E, et al. Cavity-enhanced frequency up-conversion in rubidium vapor[J]. Optics letters, 2016, 41(10): 2177-2180.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1248
  • HTML全文浏览量:  471
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-11-01
  • 录用日期:  2021-11-03
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回