留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同激光等离子体条件下的阿秒光脉冲产生

马光金 李春来 何进

马光金, 李春来, 何进. 不同激光等离子体条件下的阿秒光脉冲产生[J]. 强激光与粒子束, 2022, 34: 031014. doi: 10.11884/HPLPB202234.210297
引用本文: 马光金, 李春来, 何进. 不同激光等离子体条件下的阿秒光脉冲产生[J]. 强激光与粒子束, 2022, 34: 031014. doi: 10.11884/HPLPB202234.210297
Ma Guangjin, Li Chunlai, He Jin. Attosecond light pulses in simulations using various laser plasmas[J]. High Power Laser and Particle Beams, 2022, 34: 031014. doi: 10.11884/HPLPB202234.210297
Citation: Ma Guangjin, Li Chunlai, He Jin. Attosecond light pulses in simulations using various laser plasmas[J]. High Power Laser and Particle Beams, 2022, 34: 031014. doi: 10.11884/HPLPB202234.210297

不同激光等离子体条件下的阿秒光脉冲产生

doi: 10.11884/HPLPB202234.210297
基金项目: 国家自然科学基金项目(11804009);广东省基础与应用基础研究基金(2020A1515011179);深圳市基础研究资助基金项目(JCYJ20200109144612399,JCYJ20200109144601715,JCYJ20210324115812036)
详细信息
    作者简介:

    马光金, guangjin.ma@foxmail.com

  • 中图分类号: O53; TN241

Attosecond light pulses in simulations using various laser plasmas

  • 摘要: 通过一维粒子模拟研究了利用相对论少周期强激光与固体密度等离子体表面相互作用实现单个孤立阿秒光脉冲产生的参数条件。主要研究描述相互作用的多维参数,如激光强度、入射角和等离子体标尺长度等,对相对论高次谐波能量转换效率和孤立阿秒光脉冲分离度的影响。研究发现,虽然激光等离子体参数对阿秒光脉冲产生的影响是复杂的,但是存在着能够实现大能量孤立阿秒光脉冲的最佳等离子体标尺长度和最佳入射角。当其他相互作用条件确定时,使用中等强度的相对论强激光可以在较宽的参数范围内实现孤立的阿秒光脉冲。大角度入射时,孤立阿秒光脉冲的分离度较高,能够实现孤立阿秒光脉冲的相互作用参数范围也较宽。
  • 图  1  不同激光强度条件下的极紫外光能量转换效率

    Figure  1.  Harmonic conversion efficiencies at different laser intensities

    图  2  不同激光强度条件下的单阿秒脉冲能量产额

    Figure  2.  Attosecond pulse energy fluence (atto yield) at different laser intensities

    图  3  不同激光入射角条件下的极紫外光能量转换效率

    Figure  3.  Harmonic conversion efficiencies at different laser incidence angles

    图  4  不同激光入射角条件下的单阿秒脉冲能量产额

    Figure  4.  Attosecond pulse energy fluence at different laser incidence angles

    图  5  不同相互作用条件下${{\rm{\varphi }}_{{\rm{CEP}}}} - L$依赖的极紫外光能量产额与孤立阿秒脉冲的分离度

    Figure  5.  ${{\rm{\varphi }}_{{\rm{CEP}}}} - L$ dependent XUV energy fluencies and attosecond pulse isolation degrees from different initial laser plasma conditions

    图  6  不同相互作用条件下的激光高次谐波光谱与阿秒脉冲链的时间结构

    Figure  6.  Laser harmonic spectra and attosecond pulse temporal structures from different initial laser plasma conditions

  • [1] Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nat Photon, 2011, 5(11): 655-663. doi: 10.1038/nphoton.2011.167
    [2] Kühn S, Dumergue M, Kahaly S, et al. The ELI-ALPS facility: the next generation of attosecond sources[J]. J Phys B:At Mol Opt Phys, 2017, 50: 132002. doi: 10.1088/1361-6455/aa6ee8
    [3] Christov I P, Murnane M M, Kapteyn H C. High-harmonic generation of attosecond pulses in the “single-cycle” regime[J]. Phys Rev Lett, 1997, 78(7): 1251-1254. doi: 10.1103/PhysRevLett.78.1251
    [4] Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. doi: 10.1126/science.1157846
    [5] Ivanov M, Corkum P B, Zuo Tao, et al. Routes to control of intense-field atomic polarizability[J]. Phys Rev Lett, 1995, 74(15): 2933-2936. doi: 10.1103/PhysRevLett.74.2933
    [6] Tzallas P, Skantzakis E, Kalpouzos C, et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields[J]. Nat Phys, 2007, 3(12): 846-850. doi: 10.1038/nphys747
    [7] Mauritsson J, Johnsson P, Gustafsson E, et al. Attosecond pulse trains generated using two color laser fields[J]. Phys Rev Lett, 2006, 97: 013001. doi: 10.1103/PhysRevLett.97.013001
    [8] Pfeifer T, Gallmann L, Abel M J, et al. Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field[J]. Opt Lett, 2006, 31(7): 975-977. doi: 10.1364/OL.31.000975
    [9] Feng Ximao, Gilbertson S, Mashiko H, et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers[J]. Phys Rev Lett, 2009, 103: 183901. doi: 10.1103/PhysRevLett.103.183901
    [10] Gilbertson S, Khan S D, Wu Yi, et al. Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers[J]. Phys Rev Lett, 2010, 105: 093902. doi: 10.1103/PhysRevLett.105.093902
    [11] Rivas D E, Borot A, Cardenas D E, et al. Next generation driver for attosecond and laser-plasma physics[J]. Sci Rep, 2017, 7: 5224. doi: 10.1038/s41598-017-05082-w
    [12] Tsakiris G D, Eidmann K, Meyer-ter-Vehn J, et al. Route to intense single attosecond pulses[J]. New J Phys, 2006, 8: 19. doi: 10.1088/1367-2630/8/1/019
    [13] Ma Guangjin, Dallari W, Borot A, et al. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses[J]. Phys Plasmas, 2015, 22: 033105. doi: 10.1063/1.4914087
    [14] Quéré F, Thaury C, Monot P, et al. Coherent wake emission of high-order harmonics from overdense plasmas[J]. Phys Rev Lett, 2006, 96: 125004. doi: 10.1103/PhysRevLett.96.125004
    [15] Baeva T, Gordienko S, Pukhov A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma[J]. Phys Rev E, 2006, 74: 046404. doi: 10.1103/PhysRevE.74.046404
    [16] an der Brügge D, Pukhov A. Enhanced relativistic harmonics by electron nanobunching[J]. Phys Plasmas, 2010, 17: 033110. doi: 10.1063/1.3353050
    [17] Lichters R, Meyer-ter-Vehn J, Pukhov A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity[J]. Phys Plasmas, 1996, 3(9): 3425-3437. doi: 10.1063/1.871619
    [18] Gordienko S, Pukhov A, Shorokhov O, et al. Relativistic Doppler effect: universal spectra and zeptosecond pulses[J]. Phys Rev Lett, 2004, 93: 115002. doi: 10.1103/PhysRevLett.93.115002
    [19] Gonoskov A A, Korzhimanov A V, Kim A V, et al. Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[J]. Phys Rev E, 2011, 84: 046403. doi: 10.1103/PhysRevE.84.046403
    [20] Vincenti H, Monchocé S, Kahaly S, et al. Optical properties of relativistic plasma mirrors[J]. Nat Commun, 2014, 5: 3403. doi: 10.1038/ncomms4403
    [21] Shumakova V, Malevich P, Ališauskas S, et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk[J]. Nat Commun, 2016, 7: 12877. doi: 10.1038/ncomms12877
    [22] Leshchenko V E, Talbert B K, Lai Yuhang, et al. High-power few-cycle Cr: ZnSe mid-infrared source for attosecond soft X-ray physics[J]. Optica, 2020, 7(8): 981-988. doi: 10.1364/OPTICA.393377
    [23] Rossi G M, Mainz R E, Yang Yudong, et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science[J]. Nat Photon, 2020, 14(10): 629-635. doi: 10.1038/s41566-020-0659-0
    [24] Budriūnas R, Stanislauskas T, Adamonis J, et al. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate[J]. Opt Express, 2017, 25(5): 5797-5806. doi: 10.1364/OE.25.005797
    [25] Heissler P, Barna A, Mikhailova J M, et al. Multi-μJ harmonic emission energy from laser-driven plasma[J]. Appl Phys B, 2015, 118(2): 195-201. doi: 10.1007/s00340-014-5968-x
    [26] Behmke M, an der Brügge D, Rödel C, et al. Controlling the spacing of attosecond pulse trains from relativistic surface plasmas[J]. Phys Rev Lett, 2011, 106: 185002. doi: 10.1103/PhysRevLett.106.185002
    [27] Kormin D, Borot A, Ma Guangjin, et al. Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces[J]. Nat Commun, 2018, 9: 4992. doi: 10.1038/s41467-018-07421-5
  • 加载中
图(6)
计量
  • 文章访问数:  2605
  • HTML全文浏览量:  606
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-09-17
  • 网络出版日期:  2021-10-12
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回