[1] |
Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nat Photon, 2011, 5(11): 655-663. doi: 10.1038/nphoton.2011.167
|
[2] |
Kühn S, Dumergue M, Kahaly S, et al. The ELI-ALPS facility: the next generation of attosecond sources[J]. J Phys B:At Mol Opt Phys, 2017, 50: 132002. doi: 10.1088/1361-6455/aa6ee8
|
[3] |
Christov I P, Murnane M M, Kapteyn H C. High-harmonic generation of attosecond pulses in the “single-cycle” regime[J]. Phys Rev Lett, 1997, 78(7): 1251-1254. doi: 10.1103/PhysRevLett.78.1251
|
[4] |
Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. doi: 10.1126/science.1157846
|
[5] |
Ivanov M, Corkum P B, Zuo Tao, et al. Routes to control of intense-field atomic polarizability[J]. Phys Rev Lett, 1995, 74(15): 2933-2936. doi: 10.1103/PhysRevLett.74.2933
|
[6] |
Tzallas P, Skantzakis E, Kalpouzos C, et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields[J]. Nat Phys, 2007, 3(12): 846-850. doi: 10.1038/nphys747
|
[7] |
Mauritsson J, Johnsson P, Gustafsson E, et al. Attosecond pulse trains generated using two color laser fields[J]. Phys Rev Lett, 2006, 97: 013001. doi: 10.1103/PhysRevLett.97.013001
|
[8] |
Pfeifer T, Gallmann L, Abel M J, et al. Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field[J]. Opt Lett, 2006, 31(7): 975-977. doi: 10.1364/OL.31.000975
|
[9] |
Feng Ximao, Gilbertson S, Mashiko H, et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers[J]. Phys Rev Lett, 2009, 103: 183901. doi: 10.1103/PhysRevLett.103.183901
|
[10] |
Gilbertson S, Khan S D, Wu Yi, et al. Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers[J]. Phys Rev Lett, 2010, 105: 093902. doi: 10.1103/PhysRevLett.105.093902
|
[11] |
Rivas D E, Borot A, Cardenas D E, et al. Next generation driver for attosecond and laser-plasma physics[J]. Sci Rep, 2017, 7: 5224. doi: 10.1038/s41598-017-05082-w
|
[12] |
Tsakiris G D, Eidmann K, Meyer-ter-Vehn J, et al. Route to intense single attosecond pulses[J]. New J Phys, 2006, 8: 19. doi: 10.1088/1367-2630/8/1/019
|
[13] |
Ma Guangjin, Dallari W, Borot A, et al. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses[J]. Phys Plasmas, 2015, 22: 033105. doi: 10.1063/1.4914087
|
[14] |
Quéré F, Thaury C, Monot P, et al. Coherent wake emission of high-order harmonics from overdense plasmas[J]. Phys Rev Lett, 2006, 96: 125004. doi: 10.1103/PhysRevLett.96.125004
|
[15] |
Baeva T, Gordienko S, Pukhov A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma[J]. Phys Rev E, 2006, 74: 046404. doi: 10.1103/PhysRevE.74.046404
|
[16] |
an der Brügge D, Pukhov A. Enhanced relativistic harmonics by electron nanobunching[J]. Phys Plasmas, 2010, 17: 033110. doi: 10.1063/1.3353050
|
[17] |
Lichters R, Meyer-ter-Vehn J, Pukhov A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity[J]. Phys Plasmas, 1996, 3(9): 3425-3437. doi: 10.1063/1.871619
|
[18] |
Gordienko S, Pukhov A, Shorokhov O, et al. Relativistic Doppler effect: universal spectra and zeptosecond pulses[J]. Phys Rev Lett, 2004, 93: 115002. doi: 10.1103/PhysRevLett.93.115002
|
[19] |
Gonoskov A A, Korzhimanov A V, Kim A V, et al. Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[J]. Phys Rev E, 2011, 84: 046403. doi: 10.1103/PhysRevE.84.046403
|
[20] |
Vincenti H, Monchocé S, Kahaly S, et al. Optical properties of relativistic plasma mirrors[J]. Nat Commun, 2014, 5: 3403. doi: 10.1038/ncomms4403
|
[21] |
Shumakova V, Malevich P, Ališauskas S, et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk[J]. Nat Commun, 2016, 7: 12877. doi: 10.1038/ncomms12877
|
[22] |
Leshchenko V E, Talbert B K, Lai Yuhang, et al. High-power few-cycle Cr: ZnSe mid-infrared source for attosecond soft X-ray physics[J]. Optica, 2020, 7(8): 981-988. doi: 10.1364/OPTICA.393377
|
[23] |
Rossi G M, Mainz R E, Yang Yudong, et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science[J]. Nat Photon, 2020, 14(10): 629-635. doi: 10.1038/s41566-020-0659-0
|
[24] |
Budriūnas R, Stanislauskas T, Adamonis J, et al. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate[J]. Opt Express, 2017, 25(5): 5797-5806. doi: 10.1364/OE.25.005797
|
[25] |
Heissler P, Barna A, Mikhailova J M, et al. Multi-μJ harmonic emission energy from laser-driven plasma[J]. Appl Phys B, 2015, 118(2): 195-201. doi: 10.1007/s00340-014-5968-x
|
[26] |
Behmke M, an der Brügge D, Rödel C, et al. Controlling the spacing of attosecond pulse trains from relativistic surface plasmas[J]. Phys Rev Lett, 2011, 106: 185002. doi: 10.1103/PhysRevLett.106.185002
|
[27] |
Kormin D, Borot A, Ma Guangjin, et al. Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces[J]. Nat Commun, 2018, 9: 4992. doi: 10.1038/s41467-018-07421-5
|