留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Si-PM阵列的辐射作用位置定位方法研究

刘鑫 袁永刚 吴健 何敬涛 冯鹏 瞿金辉 刘易鑫 钱易坤 张颂 赵先圣

刘鑫, 袁永刚, 吴健, 等. 基于Si-PM阵列的辐射作用位置定位方法研究[J]. 强激光与粒子束, 2022, 34: 066001. doi: 10.11884/HPLPB202234.210363
引用本文: 刘鑫, 袁永刚, 吴健, 等. 基于Si-PM阵列的辐射作用位置定位方法研究[J]. 强激光与粒子束, 2022, 34: 066001. doi: 10.11884/HPLPB202234.210363
Liu Xin, Yuan Yonggang, Wu Jian, et al. Research on location method of radiation action based on Si-PM array[J]. High Power Laser and Particle Beams, 2022, 34: 066001. doi: 10.11884/HPLPB202234.210363
Citation: Liu Xin, Yuan Yonggang, Wu Jian, et al. Research on location method of radiation action based on Si-PM array[J]. High Power Laser and Particle Beams, 2022, 34: 066001. doi: 10.11884/HPLPB202234.210363

基于Si-PM阵列的辐射作用位置定位方法研究

doi: 10.11884/HPLPB202234.210363
基金项目: 国防科工局基础科研项目(2018-1521)
详细信息
    作者简介:

    刘 鑫,liuxin_shijiu@163.com

    通讯作者:

    吴 健,caepwujian@163.com

  • 中图分类号: TL816

Research on location method of radiation action based on Si-PM array

  • 摘要: 在辐射成像中准确估计射线与探测器相互作用的空间位置是保障成像质量的关键步骤。为进一步提升辐射作用事件的定位效果,有效抑制重心法在辐射事件作用位置靠近探测器边缘时造成的定位偏移,针对Si-PM阵列构成的位置灵敏探测系统建立了基于响应函数的定位算法。搭建了基于CsI阵列与Si-PM阵列构成的位置灵敏探测器和基于ASIC的电子学读出系统,使用等效电阻网络简化了Si-PM阵列的输出信号数量, 通过实验获得了辐射事件在Si-PM阵列上的响应函数。实验结果表明,在同一条件下使用响应函数法在最边缘像素散点的FWHM仅为使用重心法获得FWHM的46.2%,与中央像素散点的FWHM相当,基于响应函数的辐射事件方法定位效果明显优于传统重心法的定位效果,可有效克服重心法的边缘效应。
  • 图  1  典型的闪烁探测器结构

    Figure  1.  Typical scintillation detector structure

    图  2  辐射事件的电荷分布

    Figure  2.  Charge distribution of radiation events

    图  3  硬件系统原理图

    Figure  3.  Hardware system schematic diagram

    图  4  闪烁探测器模型

    Figure  4.  Scintillation detector model

    图  5  SCDC原理图

    Figure  5.  SCDC schematic

    图  6  实验系统图

    Figure  6.  Experimental system diagram

    图  7  辐射事件发生在探测器不同位置时重心法与响应函数法的定位情况

    Figure  7.  Positioning situation of the center of gravity method and the response function method when the radiation event occurs at different positions of the detector

    图  8  中央像素的拟合结果

    Figure  8.  Fitting result of central pixel

    图  9  响应函数法与重心法的结果对比

    Figure  9.  Comparison of results between response function method and center of gravity method

    图  10  中央像素处响应函数法与重心法的散点图的FWHM对比

    Figure  10.  FWHM comparison of the response function method and the center-of-gravity method of the scatter plot at the central pixel

    图  11  最边缘像素处响应函数法与重心法的散点图的FWHM对比

    Figure  11.  Comparison of FWHM between the response function method and the center of gravity method at the edge pixels

  • [1] Hu Yifan, Fan Peng, Lyu Zhenlei, et al. Design and performance evaluation of a 4π-view gamma camera with mosaic-patterned 3D position-sensitive scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1023: 165971. doi: 10.1016/j.nima.2021.165971
    [2] 周伟, 方方, 周建斌, 等. 辐射成像技术的初步应用研究[J]. 核电子学与探测技术, 2011, 31(2):235-238. (Zhou Wei, Fang Fang, Zhou Jianbin, et al. Preliminary research of radiography technique[J]. Nuclear Electronics & Detection Technology, 2011, 31(2): 235-238 doi: 10.3969/j.issn.0258-0934.2011.02.026
    [3] Wen Jiaxing, Zheng Xutao, Gao Huaizhong, et al. Optimization of Timepix3-based conventional Compton camera using electron track algorithm[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1021: 165954.
    [4] 王利民, 邬海峰, 蔡庆胜. 数字式X射线辐射扫描成像系统及其应用[J]. 物理, 1999, 28(4):222-226. (Wang Limin, Wu Haifeng, Cai Qingsheng. X-ray digital radiography and its applications[J]. Physics, 1999, 28(4): 222-226 doi: 10.3321/j.issn:0379-4148.1999.04.008
    [5] 许祖润. X和γ射线成像阵列探测器——基本问题、发展和前瞻[J]. 核电子学与探测技术, 2000, 20(1):62-65. (Xu Zurun. The imaging detector arrays for X and γ rays[J]. Nuclear Electronics & Detection Technology, 2000, 20(1): 62-65 doi: 10.3969/j.issn.0258-0934.2000.01.017
    [6] 武传鹏, 李亮. 康普顿相机成像技术进展[J]. 核技术, 2021, 44(5):43-54. (Wu Chuanpeng, Li Liang. Review of Compton camera imaging technology development[J]. Nuclear Techniques, 2021, 44(5): 43-54
    [7] 牛德芳. 基于位置灵敏探测器的电子学系统的研制[D]. 兰州: 西北师范大学, 2020

    Niu Defang. Development of electronic system based on position sensitive detector[D]. Lanzhou: Northwest Normal University, 2020
    [8] 陈陶, 李智焕, 叶沿林, 等. 二维位置灵敏硅探测器的应用研究[J]. 高能物理与核物理, 2003, 27(1):72-75. (Chen Tao, Li Zhihuan, Ye Yanlin, et al. Study of two-dimensional position sensitive silicon detector[J]. High Energy Physics and Nuclear Physics, 2003, 27(1): 72-75 doi: 10.3321/j.issn:0254-3052.2003.01.020
    [9] 王英杰. 基于硅光电倍增管的位置灵敏探测器技术研究[D]. 北京: 中国科学院大学, 2013

    Wang Yingjie. Study of position sensitive detector technologies based on silicon photomultipliers[D]. Beijing: University of Chinese Academy of Sciences, 2013
    [10] Thanasas D, Georgiou E, Giokaris N, et al. A correction method of the spatial distortion in planar images from γ-Camera systems[J]. Journal of Instrumentation, 2009, 4: P06012.
    [11] 王薇, 李传龙, 吴建华, 等. 康普顿成像系统角分辨影响因素的理论及模拟研究[J]. 原子能科学技术, 2019, 53(12):2471-2477. (Wang Wei, Li Chuanlong, Wu Jianhua, et al. Theoretical and simulation study on factor affecting angular resolution of Compton imaging system[J]. Atomic Energy Science and Technology, 2019, 53(12): 2471-2477 doi: 10.7538/yzk.2018.youxian.0905
    [12] van der Meulen N P, Strobel K, Lima T V M. New radionuclides and technological advances in SPECT and PET scanners[J]. Cancers, 1800, 13: 6183.
    [13] Lisi E, Colonna N. Position reconstruction in two-dimensional position-sensitive silicon detectors: a new analytical method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 348(2/3): 703-706.
    [14] 谭继廉, 靳根民, 段利敏, 等. 硅多条两维位置灵敏探测器的研制[J]. 核电子学与探测技术, 2006, 26(6):703-705. (Tan Jilian, Jin Genmin, Duan Limin, et al. Development of Si multi-strip Bi-dimension position sensitive detectors[J]. Nuclear Electronics & Detection Technology, 2006, 26(6): 703-705 doi: 10.3969/j.issn.0258-0934.2006.06.001
    [15] Zhang Jipeng, Liang Xiuzuo, Cai Jiale, et al. Prototype of an array SiPM-based scintillator Compton camera for radioactive materials detection[J]. Radiation Detection Technology and Methods, 2019, 3: 17. doi: 10.1007/s41605-019-0095-1
    [16] Mikeli M, Polychronopoulou A, Gektin A, et al. A new position reconstruction method for position sensitive photomultipliers[C]//Proceedings of 2008 IEEE Nuclear Science Symposium Conference Record. 2008.
    [17] Behera A, Acerbi F, Gola A, et al. Performance of a 6×6 mm2 SiPM module for time-domain diffuse optics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28: 3802910.
    [18] Duan Heying, Baratto L, Hatami N, et al. 68Ga-PSMA11 PET/CT for biochemically recurrent prostate cancer: Influence of dual-time and PMT-vs SiPM-based detectors[J]. Translational Oncology, 1800, 15: 101293.
    [19] Ma Cong, Dong Xue, Yu Li, et al. Design and evaluation of an FPGA-ADC prototype for the PET detector based on LYSO crystals and SiPM arrays[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6(1): 33-41. doi: 10.1109/TRPMS.2021.3062362
    [20] Lerche C W, Benlloch J M, Sanchez F, et al. Depth of λ-ray interaction within continuous crystals from the width of its scintillation light-distribution[J]. IEEE Transactions on Nuclear Science, 2005, 52(3): 560-572. doi: 10.1109/TNS.2005.851424
    [21] Lerche C W, Benlloch J M, Sánchez F, et al. Depth of interaction detection with enhanced position-sensitive proportional resistor network[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 326-330.
    [22] Lee S J, Chung Y H, An S J. Monte Carlo modeling of a novel depth-encoding PET detector with DETECT2000[J]. Journal of the Korean Physical Society, 2016, 69(8): 1356-1361. doi: 10.3938/jkps.69.1356
  • 加载中
图(11)
计量
  • 文章访问数:  763
  • HTML全文浏览量:  265
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 修回日期:  2022-02-17
  • 网络出版日期:  2022-02-25
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回