留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小波包分形在远区核爆电磁脉冲识别中的应用

张震川 曹保锋 李鹏 殷昊 武慧春

张震川, 曹保锋, 李鹏, 等. 小波包分形在远区核爆电磁脉冲识别中的应用[J]. 强激光与粒子束, 2022, 34: 066002. doi: 10.11884/HPLPB202234.210375
引用本文: 张震川, 曹保锋, 李鹏, 等. 小波包分形在远区核爆电磁脉冲识别中的应用[J]. 强激光与粒子束, 2022, 34: 066002. doi: 10.11884/HPLPB202234.210375
Zhang Zhenchuan, Cao Baofeng, Li Peng, et al. Recognition of far-region nuclear electromagnetic pulse based on wavelet fractal technique[J]. High Power Laser and Particle Beams, 2022, 34: 066002. doi: 10.11884/HPLPB202234.210375
Citation: Zhang Zhenchuan, Cao Baofeng, Li Peng, et al. Recognition of far-region nuclear electromagnetic pulse based on wavelet fractal technique[J]. High Power Laser and Particle Beams, 2022, 34: 066002. doi: 10.11884/HPLPB202234.210375

小波包分形在远区核爆电磁脉冲识别中的应用

doi: 10.11884/HPLPB202234.210375
基金项目: 中国科学院战略性先导专项项目(XDA17040503)
详细信息
    作者简介:

    张震川,zhenchuan2021@163.com

    通讯作者:

    曹保锋,caobaofeng@sklnbcpc.cn

  • 中图分类号: TL91;TN98

Recognition of far-region nuclear electromagnetic pulse based on wavelet fractal technique

  • 摘要: 针对远区核爆电磁脉冲(NEMP)和闪电电磁脉冲(LEMP)的识别率不能满足实际需求的问题,提出了一种基于小波包分形技术的识别方法。首先,对实测的NEMP和LEMP做插值、归一化等预处理;然后,基于小波包理论对预处理后的信号进行2层小波包分解,并利用小波包系数重构信号的分形维数,组成信号的特征向量;最后,采用最小二乘支持向量机(LSSVM)作为分类器,利用五折交叉验证法选取最优的模型参数,将特征向量输入分类器中进行训练后获得测试结果。实验结果表明,小波包分形方法在NEMP和LEMP的识别上效果显著,平均识别率达到99%以上,具有较高的应用价值。
  • 图  1  预处理后的某次LEMP信号

    Figure  1.  Waveform of a preprocessed LEMP

    图  2  小波包2层分解结构图

    Figure  2.  Sketch of wavelet packets’ two orders of decomposition

    图  3  信号被网格覆盖

    Figure  3.  Signal covered by grids

    图  4  不同组合下小波包分形维数特征分布

    Figure  4.  Distribution diagram of the fractal dimensions on wavelet packet

    图  5  参数寻优结果图

    Figure  5.  Result of search for optimal parameters

    图  6  10次实验的识别结果

    Figure  6.  Recognition accuracy of NEMP and LEMP in ten tests

    表  1  不同分类器的识别结果

    Table  1.   Accuracy of NEMP and LEMP in different classifier

    classifieraccuracy/%
    NEMPLEMP
    ANN 95.00 98.42
    SVM 95.00 98.64
    LSSVM 99.00 99.07
    下载: 导出CSV
  • [1] 谢彦召, 王赞基, 王群书, 等. 高空核爆电磁脉冲波形标准及特征分析[J]. 强激光与粒子束, 2003, 15(8):781-787. (Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 2003, 15(8): 781-787
    [2] 冯一民. 高空核爆电磁脉冲的特点及其机理[J]. 军事通信技术, 1984, 5(3):109-119. (Feng Yimin. The characteristics and mechanism of high altitude nuclear explosion electromagnetic pulse[J]. Journal of Military Communications Technology, 1984, 5(3): 109-119
    [3] 吴江峰, 罗霞, 王锋. 利用核电磁脉冲进行远区核爆探测方法研究[C]//第十三届全国核电子学与核探测技术学术年会论文集(下册). 2006: 123-125

    Wu Jiangfeng, Luo Xia, Wang Feng. Discussing on far-region nuclear burst detection by NEMP[C]//Proceedings of the 13th National Annual Conference on Nuclear Electronics and Nuclear Detection Technology (Volume Two). 2006: 123-125
    [4] 王涛, 陈福贵, 刘明, 等. 基于时域特征分布的核爆电磁脉冲识别算法[J]. 振动与冲击, 2020, 39(8):159-164. (Wang Tao, Chen Fugui, Liu Ming, et al. A discrimination algorithm of nuclear electromagnetic pulse based on characteristic parameters in time domain[J]. Journal of Vibration and Shock, 2020, 39(8): 159-164
    [5] 李鹏, 宋立军, 韩超, 等. 基于AR模型与神经网络的核爆与闪电电磁脉冲信号识别[J]. 强激光与粒子束, 2010, 22(12):3052-3056. (Li Peng, Song Lijun, Han Chao, et al. Recognition of NEMP and LEMP signals based on auto-regression model and artificial neutral network[J]. High Power Laser and Particle Beams, 2010, 22(12): 3052-3056 doi: 10.3788/HPLPB20102212.3052
    [6] 庞新良, 李鹏, 范江兵, 等. 小波计盒分形维数核爆电磁脉冲信号模糊识别[J]. 强激光与粒子束, 2012, 24(9):2259-2263. (Pang Xinliang, Li Peng, Fan Jiangbing, et al. Fuzzy identification of NEMP signal based on wavelet and box-counting dimension eigenvalue[J]. High Power Laser and Particle Beams, 2012, 24(9): 2259-2263 doi: 10.3788/HPLPB20122409.2259
    [7] 祁树锋, 李夕海, 韩绍卿, 等. 基于多重分形分析的核爆与雷电电磁脉冲识别[J]. 振动与冲击, 2013, 32(7):8-10,16. (Qi Shufeng, Li Xihai, Han Shaoqing, et al. Discrimination of nuclear explosion and lightning electromagnetic pulses using multi-fractal analysis[J]. Journal of Vibration and Shock, 2013, 32(7): 8-10,16 doi: 10.3969/j.issn.1000-3835.2013.07.002
    [8] 张旭荣, 张妙兰, 刘新中. 小波变换在核爆电磁脉冲信号识别中的应用[J]. 电子科学学刊, 1999, 21(5):710-712. (Zhang Xurong, Zhang Miaolan, Liu Xinzhong. Studies of recognition methods of nuclear and lightning impulse signals with applications of wavelet transform[J]. Journal of Electronics, 1999, 21(5): 710-712
    [9] Li Peng, Zheng Yi, Han Chao, et al. Lightning and nuclear explosion pattern recognition from optical and electromagnetic data[C]//2014 11th International Conference on Fuzzy Systems and Knowledge Discovery. 2014: 485-489.
    [10] 祁树锋, 李夕海, 韩绍卿, 等. 基于Hilbert谱区域能量比的核爆与雷电电磁脉冲识别[J]. 振动与冲击, 2013, 32(3):163-166. (Qi Shufeng, Li Xihai, Han Shaoqing, et al. Discrimination of nuclear explosion and lightning electromagnetic pulse using regional energy ratio of Hilbert spectrum[J]. Journal of Vibration and Shock, 2013, 32(3): 163-166 doi: 10.3969/j.issn.1000-3835.2013.03.032
    [11] 陈祝东. 远区核爆电磁脉冲[M]. 北京: 解放军出版社, 1985: 6

    Chen Zhudong. Nuclear explosion electromagnetic pulses in distance area[M]. Beijing: The People’s Liberation Army Press, 1985: 6
    [12] 罗毅, 甄立敬. 基于小波包与倒频谱分析的风电机组齿轮箱齿轮裂纹诊断方法[J]. 振动与冲击, 2015, 34(3):210-214. (Luo Yi, Zhen Lijing. Diagnosis method of turbine gearbox gearcrack based on wavelet packet and cepstrum analysis[J]. Journal of Vibration and Shock, 2015, 34(3): 210-214
    [13] JI Wei, Chen Guangyu, Xu Bo, et al. Recognition method of green pepper in greenhouse based on least-squares support vector machine optimized by the improved particle swarm optimization[J]. IEEE Access, 2019, 7: 119742-119754. doi: 10.1109/ACCESS.2019.2937326
    [14] 张震川, 曹保锋, 李鹏. 基于HHT与LSSVM的远区核爆电磁脉冲识别[J]. 强激光与粒子束, 2021, 33:076003. (Zhang Zhenchuan, Cao Baofeng, Li Peng. Recognition of far-region nuclear electromagnetic pulse based on Hilbert-Huang transform and least square support vector machine[J]. High Power Laser and Particle Beams, 2021, 33: 076003 doi: 10.11884/HPLPB202133.210059
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  741
  • HTML全文浏览量:  340
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 修回日期:  2022-02-07
  • 网络出版日期:  2022-03-02
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回