Research progress on laser-induced damage mechanism and threshold improvement of pulse compression gratings
-
摘要:
总结了激光辐射条件下脉冲压缩光栅的激光诱导损伤机理,探究了表面形貌、加工方式、结构缺陷以及表面污染等因素对光栅损伤造成的影响,从微观损伤机理的角度阐释了产生损伤的内在原因。在脉冲压缩光栅的激光预处理、加工工艺及表面污染物的去除等方面,分析了实现光栅损伤阈值提升的内在因素,给出了提升光栅损伤阈值的技术措施。根据影响光栅损伤阈值的因素,提出在光栅运行过程中采用多种措施组合的方式来提升光栅的激光诱导损伤阈值。脉冲压缩光栅激光损伤机理和阈值的研究对脉冲压缩光栅系统的稳定运行具有实践意义,为激光装置高能量密度的输出奠定基础。最后,提出了光栅激光诱导损伤研究的科学与技术问题,为脉冲压缩光栅激光诱导损伤阈值的提升提供新的思路,服务于重大科学装置和重要技术领域的发展。
Abstract:The damage of pulse compression gratings is the key factor offecting the stable operation and power improvement of chirped pulse amplification system. In this paper, the laser-induced damage mechanism of pulse compression grating under laser radiation is summarized, the effects of surface morphology, processing mode, structural defects and surface pollution on grating damage are explored, and the internal causes of damage are explained from the perspective of micro damage mechanism. In the aspects of laser pretreatment, processing technology and surface pollutant removal of pulse compression grating, the internal factors to improve the grating damage threshold are analyzed, and the technical measures to improve the grating damage threshold are given. A combination of various measures is proposed to improve the laser-induced damage threshold of the grating. The research on laser damage mechanism and threshold of pulse compression grating has practical significance for the stable operation of pulse compression grating system and lays a foundation for the output of high energy density of laser device. Finally, this paper puts forward the scientific and technical problems of grating’s laser-induced damage research, which provides new ideas for improving the laser-induced damage threshold of pulse compression grating, and help the development of major scientific devices and important technical fields.
-
表 1 激光诱导损伤阈值影响因素的对比
Table 1. Comparison of influencing factors of laser-induced damage threshold
influencing factor damage forms damage mechanism nodular defect[37-40] (1) under the grating column: the central grating column disappear, the adjacent two grating columns partially disappear
(2) under the grating groove: two adjacent grating columns disappearwith the increase of electric field strength, the collision effect of free electrons is enhanced, which leads to avalanche ionization laser injection energy and pulse number[41-42] damage process: bump generation, more bumps, nano crack, film falling off the bumps are formed by nodular defects, the electric field is enhanced, the free electron collision is intensified, the nano cracks are formed, and the film finally falls off film deposition process[49-51] (1) electron beam evaporation preparation: bubble formation, nano crack generation and propagation, and final film peeling off the photoresist ionizes free electrons to cause bubbles; with the increase of electric field strength, the nano cracks and the film peeling off (2) magnetron sputtering: melting of films and microstructures[49-51] ionization of free electrons; as the radiation time increases, the number of free electrons increases, the collision intensifies, and the radiation energy absorption causes the gold film to melt surface contamination[56-57] organic contamination carbonization, surface microstructure damage the contamination absorbs radiation energy and excites free electrons; with the increase of electric field strength, electron collision and avalanche ionization are intensified 表 2 激光损伤阈值提升工艺方案的比较
Table 2. Comparison of laser damage threshold enhancement process schemes
technological process advantages disadvantages high temperature annealing[65-66] the film performance is improved; significant LIDT increase annealing temperature and time have great influence on the LIDT; the operation is complicated ion beam etching[67-68] remove of pollutants; reduction of defect density potential damage to the surface nanosecond laser pre-irradiation[70] easy operation; on-line operation; removal of pollutants heat accumulation on grating surface caused by long time pre-radiation cleaning of PCG[72-74] significant effect of threshold promotion; easy operation; plasma cleaning can be used to realize on-line cleaning the pollutants produced in operation cannot be removed; chemical cleaning method is difficult to realize on-line cleaning introduction of O2 and N2[80] easy operation; good economy; on-line operation introduction of impurity gas reduces the vacuum degree, resulting in laser dispersion -
[1] Salamin Y I, Hu S X, Hatsagortsyan K Z, et al. Relativistic high-power laser–matter interactions[J]. Physics Reports, 2006, 427(2/3): 41-155. doi: 10.1016/j.physrep.2006.01.002 [2] Malka V, Fritzler S, Lefebvre E, et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse[J]. Science, 2002, 298(5598): 1596-1600. doi: 10.1126/science.1076782 [3] Bulanov S V, Khoroshkov V S. Feasibility of using laser ion accelerators in proton therapy[J]. Plasma Physics Reports, 2002, 28(5): 453-456. doi: 10.1134/1.1478534 [4] Liang X, Xie X, Kang J, et al. Design and experimental demonstration of a high conversion efficiency OPCPA pre-amplifier for petawatt laser facility[J]. High Power Laser Science and Engineering, 2018, 6: E58. doi: 10.1017/hpl.2018.52 [5] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8 [6] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 3: E3. doi: 10.1017/hpl.2014.52 [7] 魏志义, 王兆华, 滕浩, 等. 啁啾脉冲放大技术——从超快激光技术到超强物理世界[J]. 物理, 2018, 47(12):763-771. (Wei Zhiyi, Wang Zhaohua, Teng Hao, et al. Chirped pulse amplification—from ultrafast laser technology to ultraintense physics[J]. Physics, 2018, 47(12): 763-771 doi: 10.7693/wl20181202Wei Zhiyi, Wang Zhaohua, Teng Hao, et al. Chirped pulse amplification-from ultrafast laser technology to ultraintense physics[J]. Physics, 2018, 47(12): 763-771 doi: 10.7693/wl20181202 [8] Zhang W, Kong W, Wang G, et al. Review of pulse compression gratings for chirped pulse amplification system[J]. Optical Engineering, 2021, 60(2): 20902. [9] 朱晓农, 包文霞. 超短脉冲激光及其相关应用的一些基本知识[J]. 中国激光, 2019, 46:1200001. (Zhu Xiaonong, Bao Wenxia. Fundamentals of ultrashort pulse laser and its applications[J]. Chinese Journal of Lasers, 2019, 46: 1200001 doi: 10.3788/CJL201946.1200001Zhu Xiaonong, Bao Wenxia. Fundamentals of ultrashort pulse laser and its applications[J]. Chinese Journal of Lasers, 2019, 46: 1200001 doi: 10.3788/CJL201946.1200001 [10] Bai Q, Liang Y, Cheng K, et al. Design and analysis of a novel large-aperture grating device and its experimental validation[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 227(9): 1349-1359. doi: 10.1177/0954405413487728 [11] Ashe B, Marshall K L, Mastrosimone D, et al. Minimizing contamination to multilayer dielectric diffraction gratings within a large vacuum system[C]// International Society for Optics and Photonics, 2008: 706902. [12] Howard H P, Aiello A F, Dressler J G, et al. Improving the performance of high-laser-damage-threshold, multilayer dielectric pulse-compression gratings through low-temperature chemical cleaning[J]. Applied Optics, 2013, 52(8): 1682-1692. doi: 10.1364/AO.52.001682 [13] Velpula P K, Kramer D, Rus B. Femtosecond laser-induced damage characterization of multilayer dielectric coatings[J]. Coatings, 2020, 10(6): 603. doi: 10.3390/coatings10060603 [14] Haque S M, De R, Tripathi S, et al. Local structural investigation of refractory oxide thin films near laser damage threshold[J]. Optics & Laser Technology, 2019, 112: 245-254. [15] Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 1970, 41(10): 4023-4037. doi: 10.1063/1.1658407 [16] Danileiko Y K, Manenkov A A, Prokhorov A M, et al. Surface damage of ruby crystals by laser radiation[J]. Soviet Journal of Experimental and Theoretical Physics, 1970, 31(1): 31-36. [17] Danileiko Y K, Manenkov A A, Nechitailo V S, et al. The role of absorbing inclusions in laser-induced damage of transparent dielectrics[J]. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 1972, 63: 1030-1035. [18] Koldunov M, Manenkov A A. Theory of laser-induced inclusion-initiated damage in optical materials[J]. Optical Engineering, 2012, 51(12): 121811. [19] Stuart B C, Feit M D, Rubenchik A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Physical Review Letters, 1995, 74(12): 2248. doi: 10.1103/PhysRevLett.74.2248 [20] Stuart B C, Feit M D, Herman S, et al. Optical ablation by high-power short-pulse lasers[J]. Journal of the Optical Society of America B, 1996, 13(2): 459-468. doi: 10.1364/JOSAB.13.000459 [21] Manenkov A A. Fundamental mechanisms of laser-induced damage in optical materials: today's state of understanding and problems.[J]. Optical Engineering, 2014, 53(1): 1-7. doi: 10.1117/1.OE.53.1.015103 [22] Gruzdev V E. Fundamental mechanisms of laser damage of dielectric crystals by ultrashort pulse: ionization dynamics for the Keldysh model[J]. Optical Engineering, 2014, 53: 122515. doi: 10.1117/1.OE.53.12.122515 [23] Stuart B C, Feit M D, Herman S M, et al. Ultrashort-pulse optical damage[C]//International Society for Optics and Photonics. 1996, 2714: 616-629. [24] Bonod N, Néauport J. Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers[J]. Optics Communications, 2006, 260(2): 649-655. doi: 10.1016/j.optcom.2005.10.069 [25] Liu S, Shen Z, Kong W, et al. Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor[J]. Optics Communications, 2006, 267(1): 50-57. doi: 10.1016/j.optcom.2006.06.022 [26] Gamaly E G, Rode A V, Luther-Davies B, et al. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics[J]. Physics of Plasmas, 2002, 9(3): 949-957. doi: 10.1063/1.1447555 [27] Wellershoff S, Hohlfeld J, Güdde J, et al. The role of electron–phonon coupling in femtosecond laser damage of metals[J]. Applied Physics A, 1999, 69(1): S99-S107. [28] Yu J, Xiang X, He S, et al. Laser-induced damage initiation and growth of optical materials[J]. Advances in Condensed Matter Physics, 2014: 364627. [29] Britten J A, Molander W A, Komashko A M, et al. Multilayer dielectric gratings for petawatt-class laser systems[C]//International Society for Optics and Photonics. 2004, 5273: 1-7. [30] Neauport J, Lavastre E, Razé G, et al. Effect of electric field on laser induced damage threshold of multilayer dielectric gratings[J]. Optics Express, 2007, 15(19): 12508-12522. doi: 10.1364/OE.15.012508 [31] Wood R M. Laser-induced damage of optical materials[M]. CRC Press, 2003. [32] Guo Y J, Zu X T, Yuan X D, et al. Influence of porosity on laser damage threshold of sol–gel ZrO2 and SiO2 monolayer films[J]. Optik, 2012, 123(6): 479-484. doi: 10.1016/j.ijleo.2011.05.009 [33] Bananej A, Hassanpour A, Razzaghi H, et al. The effect of porosity on the laser induced damage threshold of TiO2 and ZrO2 single layer films[J]. Optics & Laser Technology, 2010, 42(8): 1187-1192. [34] Shan Y, He H, Wei C, et al. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating[J]. Applied Optics, 2010, 49(22): 4290-4295. doi: 10.1364/AO.49.004290 [35] Staggs M C, Balooch M, Kozlowski M R, et al. In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings[C]//Procof SPIE. 1992, 1624: 375-385. [36] Brett M J, Tait R N, Dew S K, et al. Nodular defect growth in thin films[J]. Journal of Materials Science: Materials in Electronics, 1992, 3(1): 64-70. doi: 10.1007/BF00701096 [37] Cheng X, Zhang J, Ding T, et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light: Science & Applications, 2013, 2(6): 80. [38] Cheng X, Tuniyazi A, Wei Z, et al. Physical insight toward electric field enhancement at nodular defects in optical coatings[J]. Optics Express, 2015, 23(7): 8609-8619. doi: 10.1364/OE.23.008609 [39] Wei C, Yi K, Fan Z, et al. Influence of composition and seed dimension on the structure and laser damage of nodular defects in HfO2/SiO2 high reflectors[J]. Applied Optics, 2012, 51(28): 6781-6788. doi: 10.1364/AO.51.006781 [40] Velpula P K, Durák M, Kramer D, et al. Evolution of femtosecond laser damage in a hafnia–silica multi-layer dielectric coating[J]. Optics Letters, 2019, 44(21): 5342-5345. doi: 10.1364/OL.44.005342 [41] Zou X, Kong F, Jin Y, et al. Influence of nodular defect size on metal dielectric mixed gratings for ultra-short ultra-high intensity laser system[J]. Optical Materials, 2019, 91: 177-182. doi: 10.1016/j.optmat.2019.02.027 [42] Poole P, Trendafilov S, Shvets G, et al. Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems[J]. Optics Express, 2013, 21(22): 26341-26351. doi: 10.1364/OE.21.026341 [43] Liang F, Vallée R, Gingras D, et al. Role of ablation and incubation processes on surface nanograting formation[J]. Optical Materials Express, 2011, 1(7): 1244-1250. doi: 10.1364/OME.1.001244 [44] Vinokurova V D, Gerke R R, Dubrovina T G, et al. Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems[J]. Quantum Electronics, 2005, 35(6): 569. doi: 10.1070/QE2005v035n06ABEH006591 [45] Jasapara J, Nampoothiri A, Rudolph W, et al. Femtosecond laser pulse induced breakdown in dielectric thin films[J]. Physical Review B, 2001, 63: 045117. doi: 10.1103/PhysRevB.63.045117 [46] Mero M, Liu J, Rudolph W, et al. Scaling laws of femtosecond laser pulse induced breakdown in oxide films[J]. Physical Review B, 2005, 71: 115109. doi: 10.1103/PhysRevB.71.115109 [47] Gallais L, Mangote B, Commandré M, et al. Transient interference implications on the subpicosecond laser damage of multidielectrics[J]. Applied Physics Letters, 2010, 97: 051112. doi: 10.1063/1.3477961 [48] Palmier S, Neauport J, Baclet N, et al. High reflection mirrors for pulse compression gratings[J]. Optics Express, 2009, 17(22): 20430-20439. doi: 10.1364/OE.17.020430 [49] Wang L, Kong F, Xia Z, et al. Evaluation of femtosecond laser damage to gold pulse compression gratings fabricated by magnetron sputtering and e-beam evaporation[J]. Applied Optics, 2017, 56(11): 3087-3095. doi: 10.1364/AO.56.003087 [50] Mcdonald J P, Mistry V R, Ray K E, et al. Femtosecond-laser-induced delamination and blister formation in thermal oxide films on silicon (100)[J]. Applied Physics Letters, 2006, 88: 153121. doi: 10.1063/1.2193777 [51] Kong F, Huang H, Wang L, et al. Femtosecond laser induced damage of pulse compression gratings[J]. Optics & Laser Technology, 2017, 97: 339-345. [52] Muhutijiang B, Qiu K, Jiang X, et al. Design and fabrication of sine-top broadband gold-coated gratings[J]. Optical Engineering, 2015, 54: 105109. doi: 10.1117/1.OE.54.10.105109 [53] Guéhenneux G, Bouchut P, Veillerot M, et al. Impact of outgassing organic contamination on laser-induced damage threshold of optics: effect of laser conditioning[C]//International Society for Optics and Photonics, 2006: 59910F. [54] Scurlock C T. A phenomenological study of the effect of trace contamination on lifetime reduction and laser-induced damage for optics[C]//SPIE. 2005, 5647: 86-94. [55] 白清顺, 郭永博, 陈家轩, 等. 超洁净制造的研究与发展[J]. 机械工程学报, 2016, 52(19):145-153. (Bai Qingshun, Guo Yongbo, Chen Jiaxuan, et al. Research and development of ultra-clean manufacturing[J]. Journal of Mechanical Engineering, 2016, 52(19): 145-153 doi: 10.3901/JME.2016.19.145Bai Qingshun, Guo Yongbo, Chen Jiaxuan, et al. Research and development of ultra-clean manufacturing[J]. Journal of Mechanical Engineering, 2016, 52(19): 145-153 doi: 10.3901/JME.2016.19.145 [56] Dai W, Xiang X, Jiang Y, et al. Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica[J]. Optics and Lasers in Engineering, 2011, 49(2): 273-280. doi: 10.1016/j.optlaseng.2010.10.001 [57] Sommer S, Stowers I, Van Doren D. Clean construction protocol for the National Ignition Facility beam path and utilities[J]. Journal of the IEST, 2003, 46(1): 85-97. doi: 10.17764/jiet.46.1.k8r243r02m3w5547 [58] Pareek R, Kumbhare M N, Mukherjee C, et al. Effect of oil vapor contamination on the performance of porous silica sol-gel antireflection-coated optics in vacuum spatial filters of high-power neodymium glass laser[J]. Optical Engineering, 2008, 47(2): 23801. doi: 10.1117/1.2844551 [59] Pereira A, Coutard J, Becker S, et al. Impact of organic contamination on 1064-nm laser-induced damage threshold of dielectric mirrors[C]//International Society for Optics and Photonics, 2007: 64030I. [60] Norton M A, Stolz C J, Donohue E E, et al. Impact of contaminates on the laser damage threshold of 1ω HR coatings[C]//SPIE. 2006, 5991: 241-249. [61] 邱志方, 王敏辉, 蒲云体, 等. 多层介质膜脉冲压缩光栅激光损伤特性研究进展[J]. 材料科学与工程学报, 2017, 35(2):329-338. (Qiu Zhifang, Wang Minhui, Pu Yunti, et al. Investigation progress of laser damage properties on multilayer dielectric film pulse compression grating[J]. Journal of Materials Science & Engineering, 2017, 35(2): 329-338Qiu Zhifang, Wang Minhui, Pu Yunti, et al. Investigation progress of laser damage properties on multilayer dielectric film pulse compression grating[J]. Journal of Materials Science & Engineering, 2017, 35(2): 329-338 [62] 孙劭伟, 齐乃杰, 孔艳, 等. 熔石英玻璃激光损伤的三维应力场研究[J]. 中国激光, 2021, 48:0101001. (Sun Shaowei, Qi Naijie, Kong Yan, et al. Three-dimensional stress fields of laser damaged fused silica[J]. Chinese Journal of Lasers, 2021, 48: 0101001 doi: 10.3788/CJL202148.0101001Sun Shaowei, Qi Naijie, Kong Yan, et al. Three-dimensional stress fields of laser damaged fused silica[J]. Chinese Journal of Lasers, 2021, 48: 0101001 doi: 10.3788/CJL202148.0101001 [63] Yang L, Xiang X, Miao X, et al. Influence of outgassing organic contamination on the transmittance and laser-induced damage of SiO2 sol-gel antireflection film[J]. Optical Engineering, 2015, 54: 126101. doi: 10.1117/1.OE.54.12.126101 [64] Hao Y, Sun M, Shi S, et al. Comparison between intrinsic and contaminant-induced damages of multilayer dielectric gratings[C]//International Society for Optics and Photonics. 2017, 10339: 103390H. [65] Zhang M, Zhu Y, Li D, et al. An innovative method for preparation of sol–gel HfO2 films with high laser-induced damage threshold after high-temperature annealing[J]. Applied Surface Science, 2021, 554: 149615. doi: 10.1016/j.apsusc.2021.149615 [66] Xu C, Xiao Q, Ma J, et al. High temperature annealing effect on structure, optical property and laser-induced damage threshold of Ta2O5 films[J]. Applied Surface Science, 2008, 254(20): 6554-6559. doi: 10.1016/j.apsusc.2008.04.034 [67] Ling X, Liu S, Liu X. Enhancement of laser-induced damage threshold of optical coatings by ion-beam etching in vacuum environment[J]. Optik, 2020, 200: 163429. doi: 10.1016/j.ijleo.2019.163429 [68] Xu M, Dai Y, Zhou L, et al. Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering[J]. Optical Materials, 2016, 58: 151-157. doi: 10.1016/j.optmat.2016.03.034 [69] Guo K, Wang Y, Chen R, et al. Effects of ion beam etching of fused silica substrates on the laser-induced damage properties of antireflection coatings at 355 nm[J]. Optical Materials, 2019, 90: 172-179. doi: 10.1016/j.optmat.2019.02.034 [70] Shao Y, Ma H, Li C, et al. Influences of nanosecond pulse pre-irradiation on femtosecond laser damage resistance of gold pulse compression grating[J]. Optics Communications, 2020, 461: 125258. doi: 10.1016/j.optcom.2020.125258 [71] 吴建波, 晋云霞, 关贺元, 等. 退火温度对宽带脉冲压缩光栅载体金属/介质多层高反膜的影响[J]. 无机材料学报, 2014, 29(10):1087-1092. (Wu Jianbo, Jin Yunxia, Guan Heyuan, et al. Effect of annealing temperature on metal/dielectric multilayers for fabricating broadband pulse compression gratings[J]. Journal of Inorganic Materials, 2014, 29(10): 1087-1092 doi: 10.15541/jim20140025Wu Jianbo, Jin Yunxia, Guan Heyuan, et al. Effect of annealing temperature on metal/dielectric multilayers for fabricating broadband pulse compression gratings[J]. Journal of Inorganic Materials, 2014, 29(10): 1087-1092 doi: 10.15541/jim20140025 [72] Ashe B, Marshall K L, Giacofei C, et al. Evaluation of cleaning methods for multilayer diffraction gratings[C]//International Society for Optics and Photonics. 2007, 6403: 64030O. [73] Chen S, Sheng B, Qiu K, et al. Cleaning method for improving laser induced damage threshold of multilayer dielectric pulse compressor gratings[J]. High Power Laser and Particle Beams, 2012, 24(11): 2631-2636. doi: 10.3788/HPLPB20122411.2631 [74] 李玉海, 白清顺, 杨德伦, 等. 铝合金表面有机污染物等离子体清洗机理及验证[J]. 中国表面工程, 2020, 33(6):58-67. (Li Yuhai, Bai Qingshun, Yang Delun, et al. Mechanism and verification of plasma cleaning of organic contaminant on aluminum alloy surface[J]. China Surface Engineering, 2020, 33(6): 58-67 doi: 10.11933/j.issn.1007-9289.20200713002Li Yuhai, Bai Qingshun, Yang Delun, et al. Mechanism and verification of plasma cleaning of organic contaminant on aluminum alloy surface[J]. China Surface Engineering, 2020, 33(6): 58-67 doi: 10.11933/j.issn.1007-9289.20200713002 [75] 李养帅, 朱健强, 庞向阳, 等. 高功率激光装置中传输镜表面颗粒物去除轨迹的数值模拟[J]. 中国激光, 2015, 42:0102010. (Li Yangshuai, Zhu Jianqiang, Pang Xiangyang, et al. Numerical simulation of debris removal trajectories on transport mirrors in high power laser system[J]. Chinese Journal of Lasers, 2015, 42: 0102010 doi: 10.3788/CJL201542.0102010Li Yangshuai, Zhu Jianqiang, Pang Xiangyang, et al. Numerical simulation of debris removal trajectories on transport mirrors in high power laser system[J]. Chinese Journal of Lasers, 2015, 42: 0102010 doi: 10.3788/CJL201542.0102010 [76] 陈上碧, 盛斌, 邱克强, 等. HfO2 顶层多层介质膜脉宽压缩光栅的 Piranha 溶液清洗[J]. 强激光与粒子束, 2011, 23(8):2106-2110. (Chen Shangbi, Sheng Bin, Qiu Keqiang, et al. Cleaning multilayer dielectric pulse compressor gratings with top layer of HfO2 by Piranha solution[J]. High Power Laser and Particle Beams, 2011, 23(8): 2106-2110 doi: 10.3788/HPLPB20112308.2106Chen Shangbi, Sheng Bin, Qiu Keqiang, et al. Cleaning multilayer dielectric pulse compressor gratings with top layer of HfO2 by Piranha solution[J]. High Power Laser and Particle Beams, 2011, 23(8): 2106-2110 doi: 10.3788/HPLPB20112308.2106 [77] Wu L, Chen K, Cheng S, et al. Thermal decomposition of hydrogen peroxide in the presence of sulfuric acid[J]. Journal of Thermal Analysis and Calorimetry, 2008, 93(1): 115-120. doi: 10.1007/s10973-007-8829-6 [78] Moser L, Marot L, Steiner R, et al. Plasma cleaning of ITER first mirrors[J]. Physica Scripta, 2017: 14047. [79] 葛绪雷, 滕浩, 郑轶, 等. 飞秒激光啁啾脉冲放大中压缩光栅的等离子体清洗[J]. 中国激光, 2012, 39:0402006. (Ge Xulei, Teng Hao, Zheng Yi, et al. Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier[J]. Chinese Journal of Lasers, 2012, 39: 0402006 doi: 10.3788/CJL201239.0402006Ge Xulei, Teng Hao, Zheng Yi, et al. Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier[J]. Chinese Journal of Lasers, 2012, 39: 0402006 doi: 10.3788/CJL201239.0402006 [80] Li Y, Ling X, Zhao Y, et al. Improvement of the laser-induced damage resistance of optical coatings in vacuum environments[J]. Optik, 2013, 124(21): 5154-5157. doi: 10.1016/j.ijleo.2013.03.049 [81] Ling X, Zhao Y, Liu X, et al. Comparative study of laser-induced damage of two reflective coatings in vacuum due to organic contamination[J]. Optik, 2012, 123(16): 1453-1456. doi: 10.1016/j.ijleo.2011.09.009 [82] Jitsuno T, Murakami H, Motokoshi S, et al. Source of contamination in damage-test sample and vacuum[C]//International Society for Optics and Photonics. 2016, 9983: 998316.