留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率掺镱光纤激光器的辐照影响分析及研究进展

郑也 马梓洋 朱嘉婧 于淼 李思源 张琳 王军龙 王学锋

郑也, 马梓洋, 朱嘉婧, 等. 高功率掺镱光纤激光器的辐照影响分析及研究进展[J]. 强激光与粒子束, 2022, 34: 041003. doi: 10.11884/HPLPB202234.210414
引用本文: 郑也, 马梓洋, 朱嘉婧, 等. 高功率掺镱光纤激光器的辐照影响分析及研究进展[J]. 强激光与粒子束, 2022, 34: 041003. doi: 10.11884/HPLPB202234.210414
Zheng Ye, Ma Ziyang, Zhu Jiajing, et al. Influence of space radiation on properties of high power Yb-doped fiber lasers and their recent progress[J]. High Power Laser and Particle Beams, 2022, 34: 041003. doi: 10.11884/HPLPB202234.210414
Citation: Zheng Ye, Ma Ziyang, Zhu Jiajing, et al. Influence of space radiation on properties of high power Yb-doped fiber lasers and their recent progress[J]. High Power Laser and Particle Beams, 2022, 34: 041003. doi: 10.11884/HPLPB202234.210414

高功率掺镱光纤激光器的辐照影响分析及研究进展

doi: 10.11884/HPLPB202234.210414
基金项目: 国家自然科学基金企业创新发展联合基金项目(U20B2058)
详细信息
    作者简介:

    郑 也,zhengye.no1@163.com

    通讯作者:

    王军龙,wjl_casc@126.com

    王学锋,xuefeng_wang@sina.com

  • 中图分类号: TN248.1

Influence of space radiation on properties of high power Yb-doped fiber lasers and their recent progress

  • 摘要:

    高功率掺镱光纤激光器在空间环境中的应用日益增多,但掺镱光纤材料在空间辐照条件下会产生色心效应,导致损耗增加,影响光纤器件以及激光器整机的性能,从而给高功率光纤激光器在空间环境的长期稳定工作带来隐患。从空间辐照对高功率光纤激光器性能的影响机理、抑制方法和研究进展等3个方面进行介绍。首先介绍了空间辐照对高功率掺镱光纤激光器中关键光学器件、放大级热负载、非线性效应等方面的影响分析,其次介绍了抑制辐照效应的典型方法及其在高功率掺镱光纤激光器中的可行性分析,最后介绍了国内外典型的高功率掺镱光纤激光器的辐照影响及抑制的研究成果,并展望了未来发展趋势。

  • 图  1  基于MOPA结构的高功率掺镱光纤激光器组成示意图

    Figure  1.  Construction of high power Yb-doped fiber laser based on MOPA structure

    图  2  Yb3+掺杂光纤辐致色心形成模型

    Figure  2.  The model of radiation-induced color center of the Yb3+-doped fiber

    图  3  载氢处理抑制光子暗化空穴相关色心的原理示意图

    Figure  3.  Illustration of suppressing the hole-related color center by H2 loading treatment

    图  4  (a)光纤长度及(b)泵浦结构对EDFA 辐照性能的影响;(c)采用优化的光纤长度和泵浦结构与非优化参数的EDFA辐照性能对比

    Figure  4.  Influence of (a) doped fiber length and (b) pump structure on the EDFA’s radiation properties; (c) comparison of the EDFA’s radiation properties with and without the optimized parameters

    图  5  不同掺杂光纤的增益随辐照总剂量的变化规律

    Figure  5.  Variation of gain versus total radiation dose of three different doping fibers

    图  6  不同辐照剂量、不同系统参数下放大器性能变化规律

    Figure  6.  Variation trend of the amplifier under different dose and different system parameters

    图  7  915 nm与976 nm泵浦下(a)输出激光功率及(b)单位长度光纤的辐致损耗随辐照剂量变化规律

    Figure  7.  (a) Output power and (b) irradiation loss vs irradiation dose under 915 nm and 976 nm pump

    图  8  辐照前后(a)光纤合束器耦合效率与(b)包层光剥离器剥离度变化情况

    Figure  8.  Properties variation of (a) combiner and (b) cladding pump stripper before and after radiation

    图  9  不同辐照剂量条件下的激光斜率效率

    Figure  9.  Slope efficiency under different total radiation dose

    图  10  原始光纤、γ辐照光纤及532 nm漂白后光纤的输出功率和标准偏差随泵浦功率变化关系

    Figure  10.  Output power and STD versus pump power of pristine, γ irradiated and 532 nm bleached fibers

    图  11  不同泵浦时光纤振荡器不同信号波长的输出功率

    Figure  11.  Output power of the fiber laser at different wavelength under diffevent pump

    图  12  (a)TMI随辐照剂量变化关系以及(b)不同辐照剂量下输出功率分布和TMI区域

    Figure  12.  (a) Variation of TMI versus radiation dose and (b) the output power profile and TMI area under different radiation dose

    图  13  掺铈光纤与商用光纤不同条件下随辐照总剂量变化规律

    Figure  13.  Comparison of properties under different radiation dose between Ce doped fiber and commercial fiber

  • [1] Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 1997, 33(7): 1049-1056. doi: 10.1109/3.594865
    [2] Tünnermann A, Schreiber T, Röser F, et al. The renaissance and bright future of fibre lasers[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38(9): S681-S693. doi: 10.1088/0953-4075/38/9/016
    [3] Limpert J, Roser F, Klingebiel S, et al. The rising power of fiber lasers and amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 537-545. doi: 10.1109/JSTQE.2007.897182
    [4] 王巍. 光纤陀螺在宇航领域中的应用及发展趋势[J]. 导航与控制, 2020, 19(4/5):18-28. (Wang Wei. Application and development tendency of fiber optic gyroscope in space[J]. Navigation and Control, 2020, 19(4/5): 18-28
    [5] 杨生胜, 高欣, 冯展祖, 等. 空间激光通信系统光电器件辐射效应研究[J]. 航天器环境工程, 2017, 34(6):571-576. (Yang Shengsheng, Gao Xin, Feng Zhanzu, et al. The effect of radiation on the optoelectronic devices used in space laser communication system[J]. Spacecraft Environment Engineering, 2017, 34(6): 571-576 doi: 10.3969/j.issn.1673-1379.2017.06.001
    [6] 冯忠伟, 荣刚, 姜爽, 等. 空间光纤传感测量技术应用研究[J]. 宇航计测技术, 2017, 37(2):5-9. (Feng Zhongwei, Rong Gang, Jiang Shuang, et al. Research on fiber sensing measurement for spacecraft[J]. Journal of Astronautic Metrology and Measurement, 2017, 37(2): 5-9 doi: 10.12060/j.issn.1000-7202.2017.02.02
    [7] 郑永超, 赵思思, 李同, 等. 激光空间碎片移除技术发展与展望[J]. 空间碎片研究, 2020, 20(4):1-10. (Zheng Yongchao, Zhao Sisi, Li Tong, et al. Current status and development of laser active debris removal technology[J]. Space Debris Research, 2020, 20(4): 1-10
    [8] 陈川, 宋光明, 杨武霖, 等. 空间碎片激光移除: 从概念设计到技术与系统实践[J]. 空间碎片研究, 2020, 20(4):11-20. (Chen Chuan, Song Guangming, Yang Wulin, et al. Laser removal of space debris: from conceptual design to technology and system practice[J]. Space Debris Research, 2020, 20(4): 11-20
    [9] 程勇, 郭延龙, 唐璜, 等. 战术激光武器的发展动向[J]. 激光与光电子学进展, 2016, 53:110004. (Cheng Yong, Guo Yanlong, Tang Huang, et al. Development trend of tactical laser weapons[J]. Laser & Optoelectronics Progress, 2016, 53: 110004
    [10] 陈伟, 杨海亮, 郭晓强, 等. 空间辐射物理及应用研究现状与挑战[J]. 科学通报, 2017, 62(10):978-989. (Chen Wei, Yang Hailiang, Guo Xiaoqiang, et al. The research status and challenge of space radiation physics and application[J]. Chinese Science Bull, 2017, 62(10): 978-989 doi: 10.1360/N972016-00438
    [11] 马晶, 李密, 谭立英, 等. 卫星光通信中空间辐射对EDFA性能的影响分析[J]. 宇航学报, 2009, 30(1):250-254. (Ma Jing, Li Mi, Tan Liying, et al. Analysis of the space radiation effect on EDFA for inter-satellite optical communication[J]. Journal of Astronautics, 2009, 30(1): 250-254 doi: 10.3873/j.issn.1000-1328.2009.00.044
    [12] 李密. 卫星光通信中空间辐射环境对掺铒光纤放大器影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2009

    Li Mi. Space radiation effect on the erbium-doped fiber amplifiers for inter-satellite optical communications[D]. Harbin: Harbin Institute of Technology, 2009
    [13] Chen Yisha, Xu Haozhen, Xing Yinbin, et al. Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier[J]. Optics Express, 2018, 26(16): 20430-20441. doi: 10.1364/OE.26.020430
    [14] 折胜飞, 梅林, 周振宇, 等. 空间光通信用耐辐照掺铒/铒镱共掺光纤研究进展[J]. 应用科学学报, 2020, 38(4):579-594. (She Shengfei, Mei Lin, Zhou Zhenyu, et al. Progress in radiation-resistant erbium-doped and erbium-ytterbium Co-doped fibers for space optical communication[J]. Journal of Applied Sciences, 2020, 38(4): 579-594 doi: 10.3969/j.issn.0255-8297.2020.04.005
    [15] 王博, 曹驰, 邢颍滨, 等. 稀土掺杂光纤辐照性能及抗辐照技术研究现状[J]. 激光与光电子学进展, 2021, 58:1516012. (Wang Bo, Cao Chi, Xing Yingbin, et al. Research status on radiation performance and radiation resistance technology of rare-earth-doped fibers[J]. Laser & Optoelectronics Progress, 2021, 58: 1516012
    [16] Shao Chongyun, Ren Jinjun, Wang Fan, et al. Origin of radiation-induced darkening in Yb3+/Al3+/P5+-doped silica glasses: effect of the P/Al ratio[J]. The Journal of Physical Chemistry B, 2018, 122(10): 2809-2820. doi: 10.1021/acs.jpcb.7b12587
    [17] 邵冲云. 掺Yb3+石英玻璃的结构、光谱与耐辐照性能及辐致暗化机理研究[D]. 上海: 中国科学院大学, 2019

    Shao Chongyun. Study on structure, spectrum, radiation resistance and radiation-induced darkening mechanism of Yb3+-doped silica glasses[D]. Shanghai: University of Chinese Academy of Sciences, 2019
    [18] Taylor E W, Hulick K E, Battiato J M, et al. Response of germanium-doped fiber Bragg gratings in radiation environments[C]//Proceedings of SPIE 3714, Enabling Photonic Technologies for Aerospace Applications. 1999.
    [19] Fernandez A F, Gusarov A I, Berghmans F, et al. Long-term irradiation of fiber Bragg gratings in a low-dose-rate gamma-neutron radiation field[C]//Proceedings of SPIE 4823, Photonics for Space Environments VIII. 2002: 205-212.
    [20] 马晶, 车驰, 于思源, 等. 光纤布拉格光栅γ辐射损伤及其对光谱特性的影响[J]. 物理学报, 2012, 61:064201. (Ma Jing, Che Chi, Yu Siyuan, et al. γ-radiation damage of fiber Bragg grating and its effects on reflected spectrum characteristics[J]. Acta Physica Sinica, 2012, 61: 064201 doi: 10.7498/aps.61.064201
    [21] 熊伟晨, 温世喆, 王福娟, 等. 掺锗单模光纤布拉格光栅γ辐照损伤实验[J]. 科学技术与工程, 2018, 18(5):76-80. (Xiong Weichen, Wen Shizhe, Wang Fujuan, et al. Experiment about γ-ray radiation damage of Ge-doped silica single-mode fiber[J]. Science Technology and Engineering, 2018, 18(5): 76-80 doi: 10.3969/j.issn.1671-1815.2018.05.013
    [22] Thompson R J, Tu M, Aveline D C, et al. High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals[J]. Optics Express, 2003, 11(14): 1709-1713. doi: 10.1364/OE.11.001709
    [23] Schreiber T, Wirth C, Schmidt O, et al. Incoherent beam combining of continuous-wave and pulsed Yb-doped fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 354-360. doi: 10.1109/JSTQE.2008.2012267
    [24] Liu Yingfan, Lü Zhiwei, Dong Yongkang, et al. Research on stimulated Brillouin scattering suppression based on multi-frequency phase modulation[J]. Chinese Optics Letters, 2009, 7(1): 29-31. doi: 10.3788/COL20090701.0029
    [25] Supradeepa V R. Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise[J]. Optics Express, 2013, 21(4): 4677-4687. doi: 10.1364/OE.21.004677
    [26] 赵丹. 总剂量效应对铌酸锂电光强度调制器性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019

    Zhao Dan. Research on total ionizing dose effect on the performance of LiNbO3 intensity modulator[D]. Harbin: Harbin Institute of Technology, 2019
    [27] 胡志涛, 何兵, 周军, 等. 高功率光纤激光器热效应的研究进展[J]. 激光与光电子学进展, 2016, 53:080002. (Hu Zhitao, He Bing, Zhou Jun, et al. Research progress in thermal effect of high power fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53: 080002
    [28] 赵楠. 高功率掺镱光纤激光器中光子暗化效应研究[D]. 武汉: 华中科技大学, 2018

    Zhao Nan. The study on photo-darkening effect in ytterbium doped high power fiber lasers[D]. Wuhan: Huazhong University of Science & Technology, 2018
    [29] Cao Ruiting, Wang Yibo, Chen Gui, et al. Investigation of photo-darkening-induced thermal load in Yb-doped fiber lasers[J]. IEEE Photonics Technology Letters, 2019, 31(11): 809-812. doi: 10.1109/LPT.2019.2906773
    [30] Otto H J, Modsching N, Jauregui C, et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277. doi: 10.1364/OE.23.015265
    [31] 陈益沙, 廖雷, 李进延. 光纤激光器模式不稳定机理及抑制方法研究进展[J]. 激光与光电子学进展, 2017, 54:080001. (Chen Yisha, Liao Lei, Li Jinyan. Research progress on mode instability mechanism and suppression methods for fiber lasers[J]. Laser & Optoelectronics Progress, 2017, 54: 080001
    [32] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(27): 13240-13266.
    [33] Hu Man, Yang Yifeng, Zheng Ye, et al. Raman suppression in a kilowatt narrow-band fiber amplifier[J]. Chinese Physics Letters, 2016, 33: 044208. doi: 10.1088/0256-307X/33/4/044208
    [34] Hu Man, Ke Weiwei, Yang Yifeng, et al. Low threshold Raman effect in high power narrowband fiber amplifier[J]. Chinese Optics Letters, 2016, 14: 011901. doi: 10.3788/COL201614.011901
    [35] Zhang Song, Zhang Wanru, Jiang Man, et al. Suppressing stimulated Raman scattering by adopting a composite cavity in a narrow linewidth fiber oscillator[J]. Applied Optics, 2021, 60(20): 5984-5989. doi: 10.1364/AO.430054
    [36] Kovalev V I, Harrison R G. Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers[J]. Optics Letters, 2006, 31(2): 161-163. doi: 10.1364/OL.31.000161
    [37] Liu Anping. Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient[J]. Optics Express, 2007, 15(3): 977-984. doi: 10.1364/OE.15.000977
    [38] Hansryd J, Dross F, Westlund M, et al. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution[J]. Journal of Lightwave Technology, 2001, 19(11): 1691-1697. doi: 10.1109/50.964069
    [39] Girard S, Laurent A, Pinsard E, et al. Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions[J]. Optics Letters, 2014, 39(9): 2541-2544. doi: 10.1364/OL.39.002541
    [40] Ladaci A, Girard S, Mescia L, et al. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions[J]. Journal of Applied Physics, 2017, 121: 163104. doi: 10.1063/1.4981532
    [41] Girard S, Morana A, Ladaci A, et al. Recent advances in radiation-hardened fiber-based technologies for space applications[J]. Journal of Optics, 2018, 20: 093001. doi: 10.1088/2040-8986/aad271
    [42] DiGiovanni D J, MacChesney J B, Kometani T Y. Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join[J]. Journal of Non-Crystalline Solids, 1989, 113(1): 58-64. doi: 10.1016/0022-3093(89)90318-9
    [43] Deschamps T, Vezin H, Gonnet C, et al. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber[J]. Optics Express, 2013, 21(7): 8382-8392. doi: 10.1364/OE.21.008382
    [44] León M, Lancry M, Ollier N, et al. Ge- and Al-related point defects generated by gamma irradiation in nanostructured erbium-doped optical fiber preforms[J]. Journal of Materials Science, 2016, 51(22): 10245-10261. doi: 10.1007/s10853-016-0253-5
    [45] Likhachev M E, Bubnov M M, Zotov K V, et al. Radiation resistance of Er-doped silica fibers: effect of host glass composition[J]. Journal of Lightwave Technology, 2013, 31(5): 749-755. doi: 10.1109/JLT.2012.2233196
    [46] Kobayashi Y, Sekiya E H, Saito K, et al. Effects of Ge co-doping on P-related radiation-induced absorption in Er/Yb-doped optical fibers for space applications[J]. Journal of Lightwave Technology, 2018, 36(13): 2723-2729. doi: 10.1109/JLT.2018.2819193
    [47] Wang Qian, Tian Cuiping, Wang Yingying, et al. Review of radiation hardening techniques for EDFAs in space environment[C]//Proceedings of SPIE, 9521 Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part I. 2015: 95211D.
    [48] Mady F, Guttilla A, Benabdesselam M, et al. Systematic investigation of composition effects on the radiation-induced attenuation mechanisms of aluminosilicate, Yb-doped silicate, Yb- and Yb, Ce-doped aluminosilicate fiber preforms[Invited][J]. Optical Materials Express, 2019, 9(6): 2466-2489. doi: 10.1364/OME.9.002466
    [49] Jetschke S, Unger S, SchwuchowA, et al. Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects[J]. Optics Express, 2016, 24(12): 13009-13022. doi: 10.1364/OE.24.013009
    [50] Engholm M, Jelger P, Laurell F, et al. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping[J]. Optics Letters, 2009, 34(8): 1285-1287. doi: 10.1364/OL.34.001285
    [51] She Shengfei, Liu Bo, Chang Chang, et al. Yb/Ce codoped aluminosilicate fiber with high laser stability for multi-kW level laser[J]. Journal of Lightwave Technology, 2020, 38(24): 6924-6931. doi: 10.1109/JLT.2020.3019740
    [52] Zhao Nan, Liu Yehui, Li Miao, et al. Mitigation of photodarkening effect in Yb-doped fiber through Na+ ions doping[J]. Optics Express, 2017, 25(15): 18191-18196. doi: 10.1364/OE.25.018191
    [53] Griscom D L. Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation[J]. Journal of Applied Physics, 1995, 77(10): 5008-5013. doi: 10.1063/1.359310
    [54] 李荣玉, 殷宗敏, 王建华, 等. 石英光纤抗辐照加固的研究[J]. 上海交通大学学报, 2000, 34(2):215-217. (Li Rongyu, Yin Zongmin, Wang Jianhua, et al. Research on anti-radiation of silica fiber[J]. Journal of Shanghai Jiaotong University, 2000, 34(2): 215-217 doi: 10.3321/j.issn:1006-2467.2000.02.015
    [55] Stone J. Interactions of hydrogen and deuterium with silica optical fibers: a review[J]. Journal of Lightwave Technology, 1987, 5(5): 712-733. doi: 10.1109/JLT.1987.1075562
    [56] Girard S, Vivona M, Laurent A, et al. Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application[J]. Optics Express, 2012, 20(8): 8457-8465. doi: 10.1364/OE.20.008457
    [57] Girard S, De Michele V, Alessi A, et al. Transient and steady-state radiation response of phosphosilicate optical fibers: influence of H2 loading[J]. IEEE Transactions on Nuclear Science, 2020, 67(1): 289-295. doi: 10.1109/TNS.2019.2947583
    [58] Sporea D, Sporea A, Oproiu C. Effects of hydrogen loading on optical attenuation of gamma-irradiated UV fibers[J]. Journal of Nuclear Materials, 2012, 423(1/3): 142-148.
    [59] Xing Yingbin, Liu Yinzi, Zhao Nan, et al. Radical passive bleaching of Tm-doped silica fiber with deuterium[J]. Optics Letters, 2018, 43(5): 1075-1078. doi: 10.1364/OL.43.001075
    [60] Liu Yinzi, Xing Yingbin, Lin Xianfeng, et al. Bleaching of photodarkening in Tm-doped silica fiber with deuterium loading[J]. Optics Letters, 2020, 45(9): 2534-2537. doi: 10.1364/OL.391069
    [61] Yoo S, Basu C, Boyland A J, et al. Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation[J]. Optics Letters, 2007, 32(12): 1626-1628. doi: 10.1364/OL.32.001626
    [62] Di Francesca D, Agnello S, Girard S, et al. Influence of O2-loading pretreatment on the radiation response of pure and fluorine-doped silica-based optical fibers[J]. IEEE Transactions on Nuclear Science, 2014, 61(6): 3302-3308. doi: 10.1109/TNS.2014.2357994
    [63] Di Francesca D, Agnello S, Girard S, et al. O2-loading treatment of Ge-doped silica fibers: a radiation hardening process[J]. Journal of Lightwave Technology, 2016, 34(9): 2311-2316. doi: 10.1109/JLT.2016.2533670
    [64] Söderlund M J, PonsodaJ J M I, Koplow J P, et al. Thermal bleaching of photodarkening in ytterbium-doped fibers[C]//Proceedings of SPIE 7580, Fiber Lasers VII: Technology, Systems, and Applications. 2010: 75800B.
    [65] Friebele E J, Gingerich M E. Photobleaching effects in optical fiber waveguides[J]. Applied Optics, 1981, 20(19): 3448-3452. doi: 10.1364/AO.20.003448
    [66] Piccoli R, Robin T, Méchin D, et al. Effective mitigation of photodarkening in Yb-doped lasers based on Al-silicate using UV/visible light[C]//Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 2014: 896121.
    [67] Chávez A D G, Kir’yanov A V, Barmenkov Y O, et al. Reversible photo-darkening and resonant photo-bleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation[J]. Laser Physics Letters, 2007, 4(10): 734-739. doi: 10.1002/lapl.200710053
    [68] Gebavi H, Taccheo S, Tregoat D, et al. Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633nm irradiation[J]. Optical Materials Express, 2012, 2(9): 1286-1291. doi: 10.1364/OME.2.001286
    [69] Piccoli R, Robin T, Brand T, et al. Effective photodarkening suppression in Yb-doped fiber lasers by visible light injection[J]. Optics Express, 2014, 22(7): 7638-7643. doi: 10.1364/OE.22.007638
    [70] Peretti R, Jurdyc A M, Jacquier B, et al. How do traces of thulium explain photodarkening in Yb doped fibers?[J]. Optics Express, 2010, 18(19): 20455-20460. doi: 10.1364/OE.18.020455
    [71] Mescia L, Girard S, Bia P, et al. Optimization of the design of high power Er3+/Yb3+-codoped fiber amplifiers for space missions by means of particle swarm approach[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 3100108.
    [72] 王巍, 王学锋, 李晶, 等. 高精度光纤陀螺用掺铒光纤光源辐照性能试验[J]. 红外与激光工程, 2012, 41(7):1826-1830. (Wang Wei, Wang Xuefeng, Li Jing, et al. Experiment on performance of erbium-doped fiber source for high performance fiber-optic gyroscope in a space irradiation environment[J]. Infrared and Laser Engineering, 2012, 41(7): 1826-1830 doi: 10.3969/j.issn.1007-2276.2012.07.026
    [73] 谌鸿伟, 陶蒙蒙, 赵海川, 等. γ射线作用下光纤激光器的功率特性及热效应分析[J]. 中国激光, 2020, 47:0401004. (Chen Hongwei, Tao Mengmeng, Zhao Haichuan, et al. Power characteristics and thermal effects of the gamma-ray radiated fiber lasers[J]. Chinese Journal of Lasers, 2020, 47: 0401004 doi: 10.3788/CJL202047.0401004
    [74] Girard S, Ouerdane Y, Origlio G, et al. Radiation effects on silica-based preforms and optical fibers—I: experimental study with canonical samples[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 3473-3482.
    [75] Girard S, Richard N, Ouerdane Y, et al. Radiation effects on silica-based preforms and optical fibers-II: coupling ab initio simulations and experiments[J]. IEEE Transactionson Nuclear Science, 2008, 55(6): 3508-3514. doi: 10.1109/TNS.2008.2007232
    [76] Girard S, MesciaL, Vivona M, et al. Design of radiation-hardened rare-earth doped amplifiers through a coupled experiment/simulation approach[J]. Journal of Lightwave Technology, 2013, 31(8): 1247-1254. doi: 10.1109/JLT.2013.2245304
    [77] Fox B P, Schneider Z V, Simmons-Potter K, et al. Gamma radiation effects in Yb-doped optical fiber[C]//Proceedings of SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications. 2007: 645328.
    [78] Fox B P, Simmons-Potter K, Thomes Jr W J, et al. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1618-1625. doi: 10.1109/TNS.2010.2043854
    [79] Fox B P, Simmons-Potter K, KlinerD A V, et al. Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers[J]. Journal of Non-Crystalline Solids, 2013, 378: 79-88. doi: 10.1016/j.jnoncrysol.2013.06.009
    [80] Singleton B, Petrosky J, Pochet M, et al. Gamma-radiation-induced degradation of actively pumped single-mode ytterbium-doped optical fibers[C]. Proceedings of SPIE 8982, Optical Components and Materials XI. 2014: 89820S.
    [81] Duchez J B, Mady F, Mebrouk Y, et al. Interplay between photo- and radiation-induced darkening in ytterbium-doped fibers[J]. Optics Letters, 2014, 39(20): 5969-5972. doi: 10.1364/OL.39.005969
    [82] Ladaci A, Girard S, Mescia L, et al. Radiation hardened high-power Er3+/Yb3+-codoped fiber amplifiers for free-space optical communications[J]. Optics Letters, 2018, 43(13): 3049-3052. doi: 10.1364/OL.43.003049
    [83] Campanella C, MesciaL, BiaP, et al. Theoretical investigation of thermal effects in high power Er3+/Yb3+-codoped double-clad fiber amplifiers for space applications[J]. Physics Status Solidi (A), 2019, 216: 1800582. doi: 10.1002/pssa.201800582
    [84] 池俊杰, 姜诗琦, 张琳, 等. 光纤激光器辐照性能实验研究[J]. 激光与光电子学进展, 2018, 55:061406. (Chi Junjie, Jiang Shiqi, Zhang Lin, et al. Experimental study on radiation performance of fiber lasers[J]. Laser & Optoelectronics Progress, 2018, 55: 061406
    [85] Xie Fenghou, Shao Chongyun, Wang Meng, et al. Research on photo-radiation darkening performance of ytterbium-doped silica fibers for space applications[J]. Journal of Lightwave Technology, 2019, 37(4): 1091-1097. doi: 10.1109/JLT.2018.2886253
    [86] 邵冲云, 于春雷, 胡丽丽. 面向空间应用耐辐照有源光纤研究进展[J]. 中国激光, 2020, 47:0500014. (Shao Chongyun, Yu Chunlei, Hu Lili. Radiation-resistant active fibersfor space applications[J]. Chinese Journal of Lasers, 2020, 47: 0500014 doi: 10.3788/CJL202047.0500014
    [87] 黄宏琪, 赵楠, 陈瑰, 等. γ射线辐照对掺Yb光纤材料性能的影响[J]. 物理学报, 2014, 63:200201. (Huang Hongqi, Zhao Nan, Chen Gui, et al. Effects of γ-radiation on Yb-doped fiber[J]. Acta Physica Sinica, 2014, 63: 200201 doi: 10.7498/aps.63.200201
    [88] Zhao Nan, Xing Yingbin, Li Jiaming, et al. 793 nm pump induced photo-bleaching of photo-darkened Yb3+-doped fibers[J]. Optics Express, 2015, 23(19): 25272-25278. doi: 10.1364/OE.23.025272
    [89] Xing Yingbin, Zhao Nan, Liao Lei, et al. Active radiation hardening of Tm-doped silica fiber based on pump bleaching[J]. Optics Express, 2015, 23(19): 24236-24245. doi: 10.1364/OE.23.024236
    [90] Xing Yingbin, Huang Hongqi, Zhao Nan, et al. Pump bleaching of Tm-doped fiber with 793 nm pump source[J]. Optics Letters, 2015, 40(5): 681-684. doi: 10.1364/OL.40.000681
    [91] Cao Ruiting, Lin Xianfeng, Chen Yisha, et al. 532 nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers[J]. Optics Express, 2019, 27(19): 26523-26531. doi: 10.1364/OE.27.026523
    [92] 张汉伟, 王小林, 唐峰, 等. γ射线导致的光子暗化对掺镱光纤激光器效率的影响[J]. 激光与光电子学进展, 2020, 57:011406. (Zhang Hanwei, Wang Xiaolin, Tang Feng, et al. Influence of γ ray induced photo darkening on efficiency of ytterbium-doped fiber laser[J]. Laser& Optoelectronics Progress, 2020, 57: 011406
    [93] 谌鸿伟, 陶蒙蒙, 赵海川, 等. γ射线辐照增益光纤影响激光器功率特性实验[J]. 中国激光, 2019, 46:1201005. (Chen Hongwei, Tao Mengmeng, Zhao Haichuan, et al. Experimental investigations on laser power characteristics influenced by gamma-ray irradiated gain fiber[J]. Chinese Journal of Lasers, 2019, 46: 1201005 doi: 10.3788/CJL201946.1201005
    [94] Tao Mengmeng, Chen Hongwei, Feng Guobin, et al. Thermal modeling of high-power Yb-doped fiber lasers with irradiated active fibers[J]. Optics Express, 2020, 28(7): 10104-10123. doi: 10.1364/OE.384980
    [95] Wang Yuying, Gao Cong, Peng Kun, et al. Laser performances of Yb-doped aluminophosphosilicate fiber under γ-radiation[C]//Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim 2018. 2018.
    [96] 李奋飞, 周晓燕, 张魁宝, 等. 伽马辐照对掺镱光纤材料特性影响的研究[J]. 强激光与粒子束, 2020, 32:081003. (Li Fenfei, Zhou Xiaoyan, Zhang Kuibao, et al. Effect of gamma irradiation on characteristics of Yb-doped fiber materials[J]. High Power Laser and Particle Beams, 2020, 32: 081003
  • 加载中
图(13)
计量
  • 文章访问数:  1337
  • HTML全文浏览量:  482
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-20
  • 修回日期:  2021-12-18
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回