留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中金属丝电爆炸拉氏磁流体动力学模拟方法

刘志刚 邹晓兵 王新新

刘志刚, 邹晓兵, 王新新. 水中金属丝电爆炸拉氏磁流体动力学模拟方法[J]. 强激光与粒子束, 2022, 34: 075002. doi: 10.11884/HPLPB202234.210433
引用本文: 刘志刚, 邹晓兵, 王新新. 水中金属丝电爆炸拉氏磁流体动力学模拟方法[J]. 强激光与粒子束, 2022, 34: 075002. doi: 10.11884/HPLPB202234.210433
Liu Zhigang, Zou Xiaobing, Wang Xinxin. Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion[J]. High Power Laser and Particle Beams, 2022, 34: 075002. doi: 10.11884/HPLPB202234.210433
Citation: Liu Zhigang, Zou Xiaobing, Wang Xinxin. Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion[J]. High Power Laser and Particle Beams, 2022, 34: 075002. doi: 10.11884/HPLPB202234.210433

水中金属丝电爆炸拉氏磁流体动力学模拟方法

doi: 10.11884/HPLPB202234.210433
基金项目: 国家自然科学基金项目(51777113,51790522)
详细信息
    作者简介:

    刘志刚,liuzg19@mails.tsinghua.edu.cn

    通讯作者:

    邹晓兵,juxb@tsinghua.edu.cn

  • 中图分类号: TM8

Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion

  • 摘要: 基于拉格朗日描述,建立了水中金属丝电爆炸的单温磁流体动力学模型,并给出一种高阶混合有限元离散求解方法。拉氏可压缩流体方程组中,速度定义在H1连续有限元空间,内能定义在L2间断有限元空间实现物质界面的精确捕捉,存在激波的区域引入张量人工粘性抑制数值振荡。磁扩散方程仅考虑周向磁通量密度,简化为标量方程,使用H1连续有限元方法离散求解。焦耳热和洛伦兹力作为源项引入实现磁流体方程的耦合。数值算例表明:磁扩散求解器能够求解存在不同电导率的多介质磁扩散问题;拉氏流体求解器能够精确追踪物质界面,具有较好的激波分辨能力;耦合RLC电路的磁流体求解器能够复现水中金属丝电爆炸加热相变、冲击波的产生与传播、放电模式转变等物理过程。
  • 图  1  UEWE1D程序实现框架

    Figure  1.  Technical outline of the UEWE1D program

    图  2  多介质磁扩散问题模拟结果

    Figure  2.  Numerical results of the multi-material magnetic diffusion problem

    图  3  一维柱形Sod激波管模拟结果

    Figure  3.  Numerical results of one-dimensional cylindrical Sod shock tube

    图  4  直径0.2 mm铜丝水中电爆炸数值模拟结果

    Figure  4.  Simulation results of underwater electrical explosion of a copper wire with 0.2 mm diameter

    图  5  不同直径铜丝水中电爆炸模拟结果

    Figure  5.  Simulation results of underwater electrical explosion of a copper wire with different diameter

  • [1] Ben-Dor G. Shock wave reflection phenomena[M]. 2nd ed. Heidelberg: Springer, 2007.
    [2] Liu Qiaojue, Ding Weidong, Han Ruoyu, et al. Fracturing effect of electrohydraulic shock waves generated by plasma-ignited energetic materials explosion[J]. IEEE Transactions on Plasma Science, 2017, 45(3): 423-431. doi: 10.1109/TPS.2017.2659761
    [3] Takayama K. Application of underwater shock wave focusing to the development of extracorporeal shock wave lithotripsy[J]. Japanese Journal of Applied Physics, 1993, 32(5S): 2192-2198.
    [4] Antonov O, Gilburd L, Efimov S, et al. Generation of extreme state of water by spherical wire array underwater electrical explosion[J]. Physics of Plasmas, 2012, 19: 102702. doi: 10.1063/1.4757984
    [5] Sheftman D, Krasik Y E. Investigation of electrical conductivity and equations of state of non-ideal plasma through underwater electrical wire explosion[J]. Physics of Plasmas, 2010, 17: 112702. doi: 10.1063/1.3497010
    [6] Gurovich V T, Grinenko A, Krasik Y E. Semianalytical solution of the problem of converging shock waves[J]. Physical Review Letters, 2007, 99: 124503. doi: 10.1103/PhysRevLett.99.124503
    [7] Grinenko A, Gurovich V T, Krasik Y E, et al. Analysis of shock wave measurements in water by a piezoelectric pressure probe[J]. Review of Scientific Instruments, 2004, 75(1): 240-244. doi: 10.1063/1.1630832
    [8] Sayapin A, Grinenko A, Efimov S, et al. Comparison of different methods of measurement of pressure of underwater shock waves generated by electrical discharge[J]. Shock Waves, 2006, 15(2): 73-80. doi: 10.1007/s00193-006-0011-8
    [9] Grinenko A, Efimov S, Fedotov A, et al. Addressing the problem of plasma shell formation around an exploding wire in water[J]. Physics of Plasmas, 2006, 13: 052703. doi: 10.1063/1.2202207
    [10] Grinenko A, Sayapin A, Gurovich V T, et al. Underwater electrical explosion of a Cu wire[J]. Journal of Applied Physics, 2005, 97: 023303. doi: 10.1063/1.1835562
    [11] 贾祖朋, 张树道, 蔚喜军. 多介质流体动力学计算方法[M]. 北京: 科学出版社, 2014

    Jia Zupeng, Zhang Shudao, Yu Xijun. Computational method of multi-material hydrodynamics[M]. Beijing: Science Press, 2014
    [12] Robinson A C, Brunner T A, Carroll S, et al. ALEGRA: an arbitrary Lagrangian-Eulerian multimaterial, multiphysics code[C]//46th AIAA Aerospace Sciences Meeting & Exhibit. 2008.
    [13] Rieben R N, White D A, Wallin B K, et al. An arbitrary Lagrangian-Eulerian discretization of MHD on 3D unstructured grids[J]. Journal of Computational Physics, 2007, 226(1): 534-570. doi: 10.1016/j.jcp.2007.04.031
    [14] Oreshkin V I, Chaikovsky S A, Datsko I M, et al. MHD instabilities developing in a conductor exploding in the skin effect mode[J]. Physics of Plasmas, 2016, 23: 122107. doi: 10.1063/1.4971443
    [15] Stone J M, Tomida K, White C J, et al. The Athena++ adaptive mesh refinement framework: design and magnetohydrodynamic solvers[J]. The Astrophysical Journal Supplement Series, 2020, 249: 4. doi: 10.3847/1538-4365/ab929b
    [16] Stone J M, Norman M L. ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests[J]. Astrophysical Journal, 1992, 80(2): 791-818.
    [17] Vaidya B, Mignone A, Bodo G, et al. Astrophysical fluid simulations of thermally ideal gases with non-constant adiabatic index: numerical implementation[J]. Astronomy & Astrophysics, 2015, 580: A110.
    [18] Chung K J, Lee K, Hwang Y S, et al. Numerical model for electrical explosion of copper wires in water[J]. Journal of Applied Physics, 2016, 120: 203301. doi: 10.1063/1.4968396
    [19] Yin Guofeng, Shi Huantong, Fan Yunfei, et al. Numerical investigation of shock wave characteristics at microsecond underwater electrical explosion of Cu wires[J]. Journal of Physics D:Applied Physics, 2019, 52: 374002. doi: 10.1088/1361-6463/ab2ab5
    [20] Anderson R, Andrej J, Barker A, et al. MFEM: a modular finite element methods library[J]. Computers & Mathematics with Applications, 2021, 81: 42-74.
    [21] Logg A, Mardal K A, Wells G. Automated solution of differential equations by the finite element method: the FEniCS book[M]. Berlin Heidelberg: Springer, 2012.
    [22] Dobrev V A, Ellis T E, Kolev T V, et al. High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics[J]. Computers & Fluids, 2013, 83: 58-69.
    [23] Stephens J, Dickens J, Neuber A. Semiempirical wide-range conductivity model with exploding wire verification[J]. Physical Review E, 2014, 89: 053102. doi: 10.1103/PhysRevE.89.053102
    [24] Lemmon E W, Huber M L, McLinden M O. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP. 9.0[M]. NIST NSRDS, 2010
    [25] Haldemann J, Alibert Y, Mordasini C, et al. AQUA: a collection of H2O equations of state for planetary models[J]. Astronomy & Astrophysics, 2020, 643: A105.
    [26] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C: the art of scientific computing, 2nd ed[J]. IEEE Concurrency, 1993, 6(4): 79.
    [27] Akima H. A method of bivariate interpolation and smooth surface fitting based on local procedures[J]. Communications of the ACM, 1974, 17(1): 18-20. doi: 10.1145/360767.360779
    [28] Sod G A. A numerical study of a converging cylindrical shock[J]. Journal of Fluid Mechanics, 1977, 83(4): 785-794. doi: 10.1017/S0022112077001463
    [29] Tzeferacos P, Fatenejad M, Flocke N, et al. FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments[J]. High Energy Density Physics, 2012, 8(4): 322-328. doi: 10.1016/j.hedp.2012.08.001
    [30] Han Ruoyu, Zhou Haibin, Wu Jiawei, et al. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge[J]. Physics of Plasmas, 2017, 24: 063511. doi: 10.1063/1.4985301
  • 加载中
图(5)
计量
  • 文章访问数:  810
  • HTML全文浏览量:  430
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 修回日期:  2021-12-22
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回