[1] |
Ben-Dor G. Shock wave reflection phenomena[M]. 2nd ed. Heidelberg: Springer, 2007.
|
[2] |
Liu Qiaojue, Ding Weidong, Han Ruoyu, et al. Fracturing effect of electrohydraulic shock waves generated by plasma-ignited energetic materials explosion[J]. IEEE Transactions on Plasma Science, 2017, 45(3): 423-431. doi: 10.1109/TPS.2017.2659761
|
[3] |
Takayama K. Application of underwater shock wave focusing to the development of extracorporeal shock wave lithotripsy[J]. Japanese Journal of Applied Physics, 1993, 32(5S): 2192-2198.
|
[4] |
Antonov O, Gilburd L, Efimov S, et al. Generation of extreme state of water by spherical wire array underwater electrical explosion[J]. Physics of Plasmas, 2012, 19: 102702. doi: 10.1063/1.4757984
|
[5] |
Sheftman D, Krasik Y E. Investigation of electrical conductivity and equations of state of non-ideal plasma through underwater electrical wire explosion[J]. Physics of Plasmas, 2010, 17: 112702. doi: 10.1063/1.3497010
|
[6] |
Gurovich V T, Grinenko A, Krasik Y E. Semianalytical solution of the problem of converging shock waves[J]. Physical Review Letters, 2007, 99: 124503. doi: 10.1103/PhysRevLett.99.124503
|
[7] |
Grinenko A, Gurovich V T, Krasik Y E, et al. Analysis of shock wave measurements in water by a piezoelectric pressure probe[J]. Review of Scientific Instruments, 2004, 75(1): 240-244. doi: 10.1063/1.1630832
|
[8] |
Sayapin A, Grinenko A, Efimov S, et al. Comparison of different methods of measurement of pressure of underwater shock waves generated by electrical discharge[J]. Shock Waves, 2006, 15(2): 73-80. doi: 10.1007/s00193-006-0011-8
|
[9] |
Grinenko A, Efimov S, Fedotov A, et al. Addressing the problem of plasma shell formation around an exploding wire in water[J]. Physics of Plasmas, 2006, 13: 052703. doi: 10.1063/1.2202207
|
[10] |
Grinenko A, Sayapin A, Gurovich V T, et al. Underwater electrical explosion of a Cu wire[J]. Journal of Applied Physics, 2005, 97: 023303. doi: 10.1063/1.1835562
|
[11] |
贾祖朋, 张树道, 蔚喜军. 多介质流体动力学计算方法[M]. 北京: 科学出版社, 2014Jia Zupeng, Zhang Shudao, Yu Xijun. Computational method of multi-material hydrodynamics[M]. Beijing: Science Press, 2014
|
[12] |
Robinson A C, Brunner T A, Carroll S, et al. ALEGRA: an arbitrary Lagrangian-Eulerian multimaterial, multiphysics code[C]//46th AIAA Aerospace Sciences Meeting & Exhibit. 2008.
|
[13] |
Rieben R N, White D A, Wallin B K, et al. An arbitrary Lagrangian-Eulerian discretization of MHD on 3D unstructured grids[J]. Journal of Computational Physics, 2007, 226(1): 534-570. doi: 10.1016/j.jcp.2007.04.031
|
[14] |
Oreshkin V I, Chaikovsky S A, Datsko I M, et al. MHD instabilities developing in a conductor exploding in the skin effect mode[J]. Physics of Plasmas, 2016, 23: 122107. doi: 10.1063/1.4971443
|
[15] |
Stone J M, Tomida K, White C J, et al. The Athena++ adaptive mesh refinement framework: design and magnetohydrodynamic solvers[J]. The Astrophysical Journal Supplement Series, 2020, 249: 4. doi: 10.3847/1538-4365/ab929b
|
[16] |
Stone J M, Norman M L. ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests[J]. Astrophysical Journal, 1992, 80(2): 791-818.
|
[17] |
Vaidya B, Mignone A, Bodo G, et al. Astrophysical fluid simulations of thermally ideal gases with non-constant adiabatic index: numerical implementation[J]. Astronomy & Astrophysics, 2015, 580: A110.
|
[18] |
Chung K J, Lee K, Hwang Y S, et al. Numerical model for electrical explosion of copper wires in water[J]. Journal of Applied Physics, 2016, 120: 203301. doi: 10.1063/1.4968396
|
[19] |
Yin Guofeng, Shi Huantong, Fan Yunfei, et al. Numerical investigation of shock wave characteristics at microsecond underwater electrical explosion of Cu wires[J]. Journal of Physics D:Applied Physics, 2019, 52: 374002. doi: 10.1088/1361-6463/ab2ab5
|
[20] |
Anderson R, Andrej J, Barker A, et al. MFEM: a modular finite element methods library[J]. Computers & Mathematics with Applications, 2021, 81: 42-74.
|
[21] |
Logg A, Mardal K A, Wells G. Automated solution of differential equations by the finite element method: the FEniCS book[M]. Berlin Heidelberg: Springer, 2012.
|
[22] |
Dobrev V A, Ellis T E, Kolev T V, et al. High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics[J]. Computers & Fluids, 2013, 83: 58-69.
|
[23] |
Stephens J, Dickens J, Neuber A. Semiempirical wide-range conductivity model with exploding wire verification[J]. Physical Review E, 2014, 89: 053102. doi: 10.1103/PhysRevE.89.053102
|
[24] |
Lemmon E W, Huber M L, McLinden M O. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP. 9.0[M]. NIST NSRDS, 2010
|
[25] |
Haldemann J, Alibert Y, Mordasini C, et al. AQUA: a collection of H2O equations of state for planetary models[J]. Astronomy & Astrophysics, 2020, 643: A105.
|
[26] |
Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C: the art of scientific computing, 2nd ed[J]. IEEE Concurrency, 1993, 6(4): 79.
|
[27] |
Akima H. A method of bivariate interpolation and smooth surface fitting based on local procedures[J]. Communications of the ACM, 1974, 17(1): 18-20. doi: 10.1145/360767.360779
|
[28] |
Sod G A. A numerical study of a converging cylindrical shock[J]. Journal of Fluid Mechanics, 1977, 83(4): 785-794. doi: 10.1017/S0022112077001463
|
[29] |
Tzeferacos P, Fatenejad M, Flocke N, et al. FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments[J]. High Energy Density Physics, 2012, 8(4): 322-328. doi: 10.1016/j.hedp.2012.08.001
|
[30] |
Han Ruoyu, Zhou Haibin, Wu Jiawei, et al. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge[J]. Physics of Plasmas, 2017, 24: 063511. doi: 10.1063/1.4985301
|