Review of development of high energy pulsed X-ray accelerators for flash radiography
-
摘要:
高能脉冲X射线闪光照相加速器在高性能爆轰流体动力学实验研究中具有重要应用,是牵引高功率脉冲技术发展的重大需求之一。综述了射频直线加速器、电子感应加速器、基于高压脉冲源和高功率二极管的强流脉冲功率加速器3大类、5种闪光照相加速器技术路线的主要特点、代表性装置,对比了几种技术路线的特点,展望了未来发展趋势:一是大力发展共轴多脉冲X射线分幅照相技术;二是采用全固态脉冲功率组件实现加速器紧凑化、小型化和可移动。
Abstract:Flash radiographic accelerators with high energy pulsed X-ray have important applications in hydrodynamic experiments, which is recognized as an important motivation to drive the development of the pulsed power technology. This paper reviews the advantages, typical facilities, and technical weaknesses of three kinds of flash X-ray radiographic accelerators, including the radio frequency linac, electron induction accelerator, and high-current accelerators driven by the high-voltage pulsed-power source and diodes. The technology trends for the future are summarized, as follows: (1) to develop accelerators capable of producing co-axial multi-pulse X-ray; (2) to develop compact, small and mobile accelerators by employing all-solid-state pulse power components.
-
表 1 国际上典型LIA型闪光照相加速器的技术指标
Table 1. Technical specifications of typical LIA typed flash X-ray radiographic accelerators in the world
accelerator organization energy/
MeVcurrent/
kAFWHM time/
nsdose@1 m/
radspot size
50% MTF/mmFXR[1] Lawrence Livermore National Laboratory, USA 18 2.3~3.4 65 325~400 3.2~3.5 AIRIX[1] Commissariat à l’Energie Atomique, CEA, France 19 1.9~3.1 60 350 1.6~2.0 DARHT-I[1] Los Alamos National Laboratory, USA 20 3.0 60 550~650 1.9~2.1 XX-I [16-17] Institute of Fluid Physics, CAEP, China 20 3.5 70 >300 <2.0 DARHT-II[13-15] Los Alamos National Laboratory, USA 18 2.0 4×50 100/100/100/300 <2.3 XX-II [16-17] Institute of Fluid Physics, CAEP, China 20 3.5 3×70 >3×300 <2.0 表 2 基于Marx发生器和脉冲形成线技术的典型闪光照相加速器的技术指标[1, 3]
Table 2. Technical specifications of typical flash radiographic accelerators based on Marx generator and pulse forming line [1, 3]
accelerator organization energy/MeV current/kA FWHM time /ns dose@1 m/rad spot size 50% MTF/mm Mevex Atomic Weapons Establishment, UK 0.8 35 50 1.2 ~2.7 Mini B Atomic Weapons Establishment, UK 2.2 30 50 12 ~3.3 SuperSwarf Atomic Weapons Establishment, UK 5.5 30 60 80 ~4.9 Mogul-D Atomic Weapons Establishment, UK 7.0 30 80 220 ~4.9 Mogul-E Atomic Weapons Establishment, UK 10.0 35 80 600 ~5.5 表 3 国际上典型IVA型闪光照相加速器的技术指标
Table 3. Technical specifications of typical IVA flash radiographic accelerators in the world
accelerator organization energy/
MeVcurrent/
kAFWHM time/
nsdose@1 m/
radspot size
50% MTF/mmCygnus Sandia National Laboratory, USA 2.2 62 50 4.0 ~1.0 RITS-6 Sandia National Laboratory, USA 10 120 45 350 <1.8 HRF (under construction) Atomic Weapons Establishment, UK 14 140 60 600~1000 ~5 Jianguang-I Northwest Institute of Nuclear Technology, China 2.4 45 50 3.7 ~1.0 Jianguang-II Northwest Institute of Nuclear Technology, China 4.3 80 50 16 <2 Hawkeye-I Institute of Fluid Physics, CAEP, China 4.3 100 ~60 18 <2 表 4 国际上典型LTD型闪光照相加速器的设计指标
Table 4. Design indexes of typical LTD typed flash radiographic accelerators in the world
accelerator organization energy/
MeVcurrent/
kAFWHM time/
nsdose@1 m/
radspot size
50% MTF/mmdual-axis 7 MeV conceptual design Sandia National Laboratory, USA 7.0 160 53 350 ~2 URSA Sandia National Laboratory, USA 2.5 58 53 2~3 ~2 IDERIX conceptual design Commissariat à l’Energie Atomique, CEA, France 8.0 120 — >100 <2 LTDR platform 10-stage
LTD in seriesCommissariat à l’Energie Atomique, CEA, France 1.0 ~170 — 3.4 ~4 3MV LTD conceptual design Institute of Fluid Physics, CAEP, China 3.0 ~75 — — — ten-stage LTD in series Institute of Fluid Physics, CAEP, China 1.0 ~100 — — — 表 5 几种典型闪光照相加速器技术路线比较
Table 5. Comparison of several typical flash radiographic accelerators
classifications accelerators advantages disadvantages RF linac RF linac compact, capable of
producing multi X-ray pulsesX-ray energy spectrum is very hard
and focal spot size is largeinduction accelerator Betatron compact, capable of
producing multi X-ray pulsesX-ray energy spectrum is very hard
and focal spot size is largeLIA high irradiation dose, small focal spot,
capability of producing multi X-ray pulsescomplexity, large volume, high cost high-voltage, high-current
pulse power acceleratorMarx+PFL high irradiation dose, small focal spot large time jitter of X-ray output, difficulty
to produce multi X-ray pulsesIVA high irradiation dose,
small focal spot, compact volumedifficult to produce multi X-ray pulses LTD small focal spot, very compact volume difficult to produce multi X-ray pulses -
[1] Ekdahl C. Modern electron accelerators for radiography[C]//PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers. 2001: 29-34. [2] Mehlhorn T A. National security research in plasma physics and pulsed power: past, present, and future[J]. IEEE Transactions on Plasma Science, 2014, 42(5): 1088-1117. doi: 10.1109/TPS.2014.2310468 [3] Goldsack T J, Bryant T F, Beech P F, et al. Multimegavolt multiaxis high-resolution flash X-ray source development for a new hydrodynamics research facility at AWE Aldermaston[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 239-253. doi: 10.1109/TPS.2002.1003866 [4] 康克军, 陈志强, 肖永顺, 等. 适于大型装备缺陷检测的工业CT辐射成像技术[J]. 中国体视学与图像分析, 2016, 21(1):14-21. (Kang Kejun, Chen Zhiqiang, Xiao Yongshun, et al. Industrial CT imaging for detecting defects in large scale equipments[J]. Chinese Journal of Stereology and Image Analysis, 2016, 21(1): 14-21Kang Kejun, Chen Zhiqiang, Xiao Yongshun, et al. Industrial CT imaging for detecting defects in large scale equipments[J]. Chinese Journal of Stereology and Image Analysis, 2016, 21(1): 14-21 [5] 邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016Qiu Aici. Pulsed power technology application[M]. Xi’an: Shaanxi Science and Technology Press, 2016 [6] 陈思富, 黄子平, 石金水. 带电粒子加速器的基本类型及其技术实现[J]. 强激光与粒子束, 2020, 32:045101. (Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101 doi: 10.11884/HPLPB202032.190424Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101 doi: 10.11884/HPLPB202032.190424 [7] Boyd T J Jr, Rogers B T, Tesche F R, et al. PHERMEX—A high-current electron accelerator for use in dynamic radiography[J]. Review of Scientific Instruments, 1965, 36(10): 1401-1408. doi: 10.1063/1.1719343 [8] Starke T P. PHERMEX standing-wave linear electron accelerator[J]. IEEE Transactions on Nuclear Science, 1983, 30(2): 1402-1404. doi: 10.1109/TNS.1983.4332543 [9] Carlson R L, Kang M, Melton J G, et al. A 600-kV double-pulser for the PHERMEX electron gun[C]//Proceedings of the 11th IEEE International Pulsed Power Conference. 1997: 1698-1703. [10] Kuropatkin Y P, Mironenko V D, Suvorov V N, et al. Characteristics of the installation for flash radiography based on the uncored betatron BIM-M[C]//Proceedings of the 11th IEEE International Pulsed Power Conference. 1997: 1663-1668. [11] Kuropatkin Y P, Mironenko V D, Suvorov V N, et al. Uncored betatron BIM-M a source of bremsstrahlung for flash radiography[C]//Proceedings of the 11th IEEE International Pulsed Power Conference. 1997: 1669-1673. [12] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005Liu Xisan. High power pulse technology[M]. Beijing: National Defense Industry Press, 2005 [13] Scarpetti R D, Nath S, Davis H A, et al. Status of the DARHT 2nd axis at Los Alamos National Laboratory[C]//Proceedings of 2005 IEEE Pulsed Power Conference. 2005: 37-42. [14] Schulze M E, Ekdahl C A, Hughes T P, et al. Ion production and RF generation in the DARHT-II beam dump[C]//Proceedings of 2013 Abstracts IEEE International Conference on Plasma Science. San Francisco, CA, USA, 2013: 395-402. [15] Nielsen K, Barraza J, Kang M, et al. Upgrades to the DARHT second axis induction cells[C]//Proceedings of 2005 IEEE Pulsed Power Conference. 2005: 43-46. [16] 石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28:010201. (Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-II accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-II accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201 [17] Xie Weiping. The introduction of flash X-ray sources for radiography in Institute of Fluid Physics[C]//Proceedings of the 7th Europe-Asia Pulsed Power Conference and High Power Particle Beams Conference. 2018. [18] Crawford M, Barraza J. Scorpius: the development of a new multi-pulse radiographic system[C]//Proceedings of the 21st International Conference on Pulsed Power. 2017: 1-6. [19] Burris-Mog T J. Scorpius and the integrated test stand[R]. Los Alamos Report, LA-UR-20-22398, 2020. [20] Raboisson G, Eyl P, Roche M, et al. Asterix, a high intensity X-ray generator[C]//Proceedings of the 7th Pulsed Power Conference. 1989: 567-570. [21] Commisso R J, Young F C, Allen R J, et al. Overview of the 6-MV, rod-pinch experiment on Asterix[C]//Proceedings of the 14th IEEE International Pulsed Power Conference. 2003: 479-482. [22] Young F C, Commisse R J, Allen R J, et al. Radiographic results for the rod-pinch diode scaled up to 6 MV[C]//Proceedings of the 14th IEEE International Pulsed Power Conference. 2003: 979-982. [23] 马成刚, 李洪涛, 邓明海, 等. 1 MV X光机系统可靠性实验研究[J]. 强激光与粒子束, 2020, 32:025018. (Ma Chenggang, Li Hongtao, Deng Minghai, et al. Experimental research on reliability of 1 MV X-ray system for radiography[J]. High Power Laser and Particle Beams, 2020, 32: 025018 doi: 10.11884/HPLPB202032.190378Ma Chenggang, Li Hongtao, Deng Minghai, et al. Experimental research on reliability of 1 MV X-ray system for radiography[J]. High Power Laser and Particle Beams, 2020, 32: 025018 doi: 10.11884/HPLPB202032.190378 [24] Maenchen J, Cordova S, Gustwiller J, et al. Inductive voltage adder driven X-ray sources for hydrodynamic radiography[C]//Proceedings of the 12th IEEE International Pulsed Power Conference. 1999: 279-282. [25] Maenchen J, Cooperstein G, O’Malley J, et al. Advances in pulsed power-driven radiography systems[J]. Proceedings of the IEEE, 2004, 92(7): 1021-1042. doi: 10.1109/JPROC.2004.829056 [26] Oliver B V, Hahn K, Johnston M D, et al. Recent advances in radiographic X-ray source development at Sandia[C]//Proceedings of the 17th International Conference on High Power Particle Beams. 2008: 1-5. [27] 邱爱慈, 孙凤举, 杨海亮, 等. 紧凑型闪光照相强流脉冲电子束加速器的发展[R]. 2009年中国核学会学术年会, 2009Qiu Aici, Sun Fengju, Yang Hailing. Developments of compact pulsed-power high current accelerator for radiography[R].2009 Annual Academic Meeting of China Nuclear Society, 2009. [28] Smith I, Corcoran P, Carboni V, et al. Induction voltage adder architectures and electrical characteristics[C]//Proceedings of the 14th IEEE International Pulsed Power Conference. 2003: 371-378. [29] Smith I D. Induction voltage adders and the induction accelerator family[J]. Physical Review Accelerators and Beams, 2004, 7: 064801. doi: 10.1103/PhysRevSTAB.7.064801 [30] Smith J, Carlson R, Fulton R, et al. Cygnus dual beam radiography source[C]//Proceedings of 2005 IEEE Pulsed Power Conference. Monterey, California, USA, 2005: 334-337. [31] Smith I D, Bailey V L, Fockler J, et al. Design of a radiographic integrated test stand (RITS) based on a voltage adder, to drive a diode immersed in a high magnetic field[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1653-1659. doi: 10.1109/27.901250 [32] Thomas K, Beech P, Brown S, et al. Status of the AWE hydrus IVA fabrication[C]//Proceedings of 2011 IEEE Pulsed Power Conference. 2011: 1042-1047. [33] 孙凤举, 邱爱慈, 杨海亮, 等. 感应电压叠加器驱动阳极杆箍缩二极管型脉冲X射线源[J]. 强激光与粒子束, 2010, 22(4):936-940. (Sun Fengju, Qiu Aici, Yang Hailing, et al. Pulsed X-ray source based on inductive voltage adder and rod pinch diode for radiography[J]. High Power Laser and Particle Beams, 2010, 22(4): 936-940 doi: 10.3788/HPLPB20102204.0936Sun Fengju, Qiu Aici, Yang Hailing, et al. Pulsed X-ray source based on inductive voltage adder and rod pinch diode for radiography[J]. High Power Laser and Particle Beams, 2010, 22(4): 936-940 doi: 10.3788/HPLPB20102204.0936 [34] Wei Hao, Yin Jiahui, Zhang Pengfei, et al. Simulation, experiment, and performance of a 4 MV induction voltage adder machine for flash x-ray radiography[J]. Physical Review Accelerators and Beams, 2021, 24: 020402. doi: 10.1103/PhysRevAccelBeams.24.020402 [35] Xie Weiping, Xia Minghe, Guo Fan, et al. Design and performance of a pulsed power-driven X-ray source for flash radiography[J]. Physical Review Accelerators and Beams, 2021, 24: 110401. doi: 10.1103/PhysRevAccelBeams.24.110401 [36] Smith D L, Johnson D L, Boyes J D, et al. Proposed inductive voltage adder based accelerator concepts for the second axis of DARHT[C]//Proceedings of the 11th IEEE International Pulsed Power Conference. Baltimore, 1997: 1647-1652. [37] Mazarakis M, Cuneo M, Hess M, et al. Multi-pulse electron diode development for flash radiography[C]//Proceedings of 2015 IEEE Pulsed Power Conference. 2015: 1-5. [38] 孙凤举, 邱爱慈, 魏浩, 等. 闪光照相快放电直线型变压器脉冲源新进展[J]. 现代应用物理, 2015, 6(4):233-243. (Sun Fengju, Qiu Aici, Wei Hao, et al. Development of fast linear transformer drivers for radiography[J]. Modern Applied Physics, 2015, 6(4): 233-243 doi: 10.3969/j.issn.2095-6223.2015.04.001Sun Fengju, Qiu Aici, Wei Hao, et al. Development of fast linear transformer drivers for radiography[J]. Modern Applied Physics, 2015, 6(4): 233-243 doi: 10.3969/j.issn.2095-6223.2015.04.001 [39] Rose D V, Welch D R, Oliver B V, et al. Numerical analysis of a pulsed compact LTD system for electron beam-driven radiography[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1879-1887. doi: 10.1109/TPS.2006.881297 [40] Leckbee J, Cordova S, Oliver B, et al. Linear transformer driver (LTD) research for radiographic applications[C]//Proceedings of 2011 IEEE Pulsed Power Conference. 2011: 614-618. [41] Leckbee J J, Maenchen J E, Johnson D L, et al. Design, simulation, and fault analysis of a 6.5-MV LTD for flash X-ray radiography[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1888-1899. doi: 10.1109/TPS.2006.879553 [42] Leckbee J J, Oliver B V, Bruner N, et al. Design of a 7-MV linear transformer driver (LTD) for down-hole flash X-ray radiography[R]. Sandia Report, SAND2008-6142, 2008. [43] Toury M, Vermare C, Etchessahar B, et al. IDERIX: an 8 MV flash X-rays machine using a LTD design[C]//Proceedings of the 16th IEEE International Pulsed Power Conference. 2007: 599-602. [44] Toury M, Cartier F, Caron M, et al. Transfer and test of a 1 MV LTD generator at CEA[C]//Proceedings of 2013 Abstracts IEEE International Conference on Plasma Science. 2013: 599-602. [45] Maisonny R, Ribière M, Toury M, et al. Investigating the performances of a 1 MV high pulsed power linear transformer driver: from beam dynamics to X radiation[J]. Physical Review Accelerators and Beams, 2016, 19: 120401. doi: 10.1103/PhysRevAccelBeams.19.120401 [46] 陈林, 周良骥, 蒋吉昊, 等. 基于方波LTD的3 MV闪光照相驱动器设计[J]. 强激光与粒子束, 2017, 29:115001. (Chen Lin, Zhou Liangji, Jiang Jihao, et al. Design of 3 MV flash radiographic driver based on square pulse LTD[J]. High Power Laser and Particle Beams, 2017, 29: 115001 doi: 10.11884/HPLPB201729.170189Chen Lin, Zhou Liangji, Jiang Jihao, et al. Design of 3 MV flash radiographic driver based on square pulse LTD[J]. High Power Laser and Particle Beams, 2017, 29: 115001 doi: 10.11884/HPLPB201729.170189 [47] Zou Wenkang, Chen Lin, Liu Dagang, et al. Investigation on high inductive helical supported magnetically insulated transmission line on a 10-stage linear transformer driver system[J]. Physical Review Accelerators and Beams, 2012, 15: 110401. doi: 10.1103/PhysRevSTAB.15.110401 [48] 陈林, 谢卫平, 邹文康, 等. 100 GW快脉冲直线型变压器功率源[J]. 强激光与粒子束, 2012, 24(3):651-654. (Chen Lin, Xie Weiping, Zou Wenkang, et al. 100 GW fast linear transformer driver generator[J]. High Power Laser and Particle Beams, 2012, 24(3): 651-654 doi: 10.3788/HPLPB20122403.0651Chen Lin, Xie Weiping, Zou Wenkang, et al. 100 GW fast linear transformer driver generator[J]. High Power Laser and Particle Beams, 2012, 24(3): 651-654 doi: 10.3788/HPLPB20122403.0651 [49] 魏浩, 孙凤举, 呼义翔, 等. 欠匹配型磁绝缘感应电压叠加器次级阻抗优化方法[J]. 物理学报, 2017, 66:208401. (Wei Hao, Sun Fengju, Hu Yixiang, et al. Method of optimizing secondary impedances for magnetically-insulated induction voltage adders with impedance under-matched loads[J]. Acta Physica Sinica, 2017, 66: 208401 doi: 10.7498/aps.66.208401Wei Hao, Sun Fengju, Hu Yixiang, et al. Method of optimizing secondary impedances for magnetically-insulated induction voltage adders with impedance under-matched loads[J]. Acta Physica Sinica, 2017, 66: 208401 doi: 10.7498/aps.66.208401 [50] 马勋, 邓建军, 姜苹, 等. 流体动力学实验用闪光X光机研究进展[J]. 强激光与粒子束, 2014, 26:010201. (Ma Xun, Deng Jianjun, Jiang Ping, et al. Review of flash X-ray generator applied to hydrokinetical experiments[J]. High Power Laser and Particle Beams, 2014, 26: 010201 doi: 10.3788/HPLPB20142601.10201Ma Xun, Deng Jianjun, Jiang Ping, et al. Review of flash X-ray generator applied to hydrokinetical experiments[J]. High Power Laser and Particle Beams, 2014, 26: 010201 doi: 10.3788/HPLPB20142601.10201 [51] 江伟华. 高重复频率脉冲功率技术及其应用: (7)主要技术问题和未来发展趋势[J]. 强激光与粒子束, 2015, 27:010201. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (VII) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27: 010201 doi: 10.11884/HPLPB201527.010201Jiang Weihua. Repetition rate pulsed power technology and its applications: (VII) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27: 010201 doi: 10.11884/HPLPB201527.010201 [52] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040(Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040