High-power picosecond pulse source based on high trigger signal and power synthesis
-
摘要: 对于目标的攻击、干扰和探测,超宽带时域脉冲源的幅值直接影响其攻击、干扰和探测的强度和效果。基于雪崩晶体管的Marx电路被广泛应用在产生此类信号源上,传统的Marx电路可以一定程度上提高输出电压的幅值,但由于雪崩晶体管功率容量较低等原因,雪崩晶体管的Marx电路输出电压幅度会随级数增加而达到饱和。针对此类问题,为了产生更高幅值的脉冲信号,综合采用提高触发信号和使用宽带功率合成器的手段。最终利用26级Marx电路作为触发信号,4路40级Marx电路进行功率合成的方法,实现了输出电压幅值为8.7 kV、上升沿约为180 ps的技术指标,并通过机理分析了高触发信号对雪崩晶体管Marx电路的影响,通过实验得到了印证。Abstract: For the attack, interference and detection of the target, the amplitude of the UWB time-domain pulse source directly affects the intensity and effect. The Marx circuit based on avalanche transistors is widely used to generate such signal sources. The traditional Marx circuit can increase the amplitude of the output voltage to a certain extent. However, due to the low power capacity of the avalanche transistor, the output voltage of the Marx circuit of the avalanche transistor is low. The amplitude will reach saturation with the increase of the number of stages. To generate a higher amplitude pulse signal, this study comprehensively adopts the means of increasing the trigger signal and using a broadband power combiner. Finally it uses a 26-level Marx circuit as the trigger signal, by the method of 4-channel 40-level Marx circuit for power synthesis, the output voltage amplitude is 8.7 kV, the rising edge is about 180 ps, and the impact of high trigger signal on the avalanche transistor Marx circuit is analyzed through mechanism. The experiment was confirmed.
-
表 1 雪崩三极管技术指标
Table 1. Avalanche transistor specifications
collector-base
voltage UCBO/Vcollector-emitter
voltage UCES/Vcollector-emitter
voltage UCEO/Vemitter-base
voltage UEBO/Vcontinuous collector
current IC/Vpeak collector
current ICM/V260 260 100 6 500 60 表 2 功率分配器技术指标
Table 2. Technical indexes of power distributor
item frequency/
MHzinsertion loss/
dBinput
VSWRoutput
VSWRisolation/
dBimpedance/
Ωpower rating/W splitter combiner 2-way 500~8000 ≤1.5 1.15∶1 1.11∶1 27 50 30 2 4-way 380~2700 ≤0.6 1.7∶1 − 19 50 30 2 -
[1] Krishnaswamy P, Kuthi A, Vernier P T, et al. Compact subnanosecond pulse generator using avalanche transistors for cell electroperturbation studies[J]. IEEE Transactionson Dielectricsand ElectricalInsulation, 2007, 14(4): 873-877. doi: 10.1109/TDEI.2007.4286518 [2] Petrella R A, Schoenbach K H, Xiao Shu. A dielectric rod antenna for picosecond pulse stimulation of neurological tissue[J]. IEEE Transactions on Plasma Science, 2016, 44(4): 708-714. doi: 10.1109/TPS.2016.2537213 [3] Xiao Shu, Guo Siqi, Nesin V, et al. Subnanosecond electric pulses cause membrane permeabilization and cell death[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(5): 1239-1245. [4] Wang Qing, Tian Xiaojian, Liu Yang, et al. Design of an ultra-wideband pulse generator based on avalanche transistor[C]//2008 4th International Conference on Wireless Communications, Networking and Mobile Computing. 2008: 1-4. [5] Jethwa J, Marinero E E, Müller A. Nanosecond risetime avalanche transistor circuit for triggering a nitrogen laser[J]. Review of Scientific Instruments, 1981, 52(7): 989-991. doi: 10.1063/1.1136738 [6] Lundy A, Parker JR, Lunsford J S, et al. Avalanche transistor pulser for fast-gated operation of microchannel plate image-intensifiers[J]. IEEE Transactions on Nuclear Science, 1978, 25(1): 591-597. [7] 袁雪林, 梁步阁, 吕波, 等. 探地雷达高功率高稳定度脉冲源设计[J]. 强激光与粒子束, 2007, 19(10):1689-1692. (Yuan Xuelin, Liang Buge, Lv Bo, et al. High-power and high-stability pulser for ground penetrating radar[J]. High Power Laser and Particle Beams, 2007, 19(10): 1689-1692 [8] Ramezani M, Akmal A A S, Niayesh K. Solid-state high-voltage pulse generator for low temperature plasma ion mobility spectrometry[J]. IEEE Transactions on Plasma Science, 2019, 47(3): 1629-1636. doi: 10.1109/TPS.2019.2894844 [9] Takasaki M, Kurita H, Kubota T, et al. Electrostatic precipitation of diesel PM at reduced gas temperature[C]//2015 IEEE Industry Applications Society Annual Meeting. Addison, 2015: 1-4. [10] Li Zi, SakaiS, YamadaC, et al. The effects of pulsed streamerlike discharge on cyanobacteria cells[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1719-1724. doi: 10.1109/TPS.2006.883378 [11] Akiyama H, Sakugawa T, Namihira T, et al. Industrial applications of pulsed power technology[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1051-1064. doi: 10.1109/TDEI.2007.4339465 [12] 徐乐, 江伟华. 基于雪崩三极管的快前沿脉冲功率源研究[J]. 强激光与粒子束, 2016, 28:015001. (Xu Le, Jiang Weihua. Study of fast rising pulsed power generator based on avalanche transistors[J]. High Power Laser and Particle Beams, 2016, 28: 015001 doi: 10.11884/HPLPB201628.015001 [13] Shen Saikang, Yan Jiaqi, Wang Yanan, et al. Further investigations on a modified avalanche transistor-based Marx bank circuit[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 8506-8513. doi: 10.1109/TIM.2020.2993343 [14] Yan Jiaqi, Shen Saikang, Ding Weidong. High-power nanosecond pulse generators with improved reliability by adopting auxiliary triggering topology[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1353-1364. doi: 10.1109/TPEL.2019.2922360 [15] Shen Saikang, Yan Jiaqi, SunGuoxiang, et al. Improved auxiliary triggering topology for high-power nanosecond pulse generators based on avalanche transistors[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 13634-13644. doi: 10.1109/TPEL.2021.3087732 [16] Deng Zichen, Yuan Qi, Shen Saikang, et al. High voltage nanosecond pulse generator based on avalanche transistor Marx bank circuit and linear transformer driver[J]. Review of Scientific Instruments, 2021, 92: 034715. doi: 10.1063/5.0042523 [17] 张萌. 基于Marx电路的亚纳秒级脉冲源研制[D]. 成都: 电子科技大学, 2020: 1-10Zhang Meng. Development of sub-nanosecond pulse source based on Marx circuit[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 1-10 [18] Li Jiangtao, Zhao Zheng, Sun Yi, et al. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer[J]. Review of Scientific Instruments, 2017, 88: 033507. doi: 10.1063/1.4978650 [19] Yang Qingxi, Kang Qiaokun, Chen Xiaoyu, et al. A higher amplitude all solid state pulse source based on the power synthesis circuit[C]//Proceedings of SPIE 11763 Seventh Symposium on Novel Photoelectronic Detection Technology and Applications. 2021: 117635L. [20] 杨宏春. 基于光导开关的高功率微波系统研究[D]. 成都: 电子科技大学, 2008: 1-10Yang Hongchun. Research on high power microwave system based on photoconductive switch[D]. Chengdu: University of Electronic Science and Technology of China, 2008: 1-10 [21] 浙江大学半导体器件教研室. 晶体管原理[M]. 北京: 国防工业出版社, 1980Department of Semiconductor Devices, Zhejiang University. Transistor Principle[M]. Beijing: National Defense Industry Press, 1980 [22] Mallik K. Nonuniform doping of the collector in avalanche transistors to improve the performance of Marx bank circuits[J]. Review of Scientific Instruments, 2000, 71(4): 1853-1861. doi: 10.1063/1.1150547 [23] Mallik K. The theory of operation of transistorized Marx bank circuits[J]. Review of Scientific Instruments, 1999, 70(4): 2155-2160. doi: 10.1063/1.1149729 [24] QiuYangxin, XieYanzhao, Gao Mingxiang, et al. High power and high pulse repetition frequency transistorized pulser by time base stability improvement and power synthesis technique[J]. Review of Scientific Instruments, 2020, 91: 084703. doi: 10.1063/5.0014645 [25] 党龙飞. 钻孔测井雷达关键技术与原理样机研究[D]. 成都: 电子科技大学, 2019: 1-10Dang Longfei. Research on key technologies and principles prototype of borehole logging[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 1-10 [26] He Renjie, Li Yang, Liu Zhennan, et al. Development of a high peak voltage picoseconds avalanche transistor based Marx bank circuit[J]. IEEE Access, 2021, 9: 64844-64851. doi: 10.1109/ACCESS.2021.3075960