Influence factors of the pulsed breakdown time delay jitter of a self-triggered UV-illuminated switch and an improvement method
-
摘要: 研究了一种自触发紫外预电离开关击穿时延抖动特性的影响因素,结果表明:触发间隙电容放电阶段起预电离作用时,预电离注入时刻开关电场是开关时延抖动的决定性因素,提高工作系数和采用逸出功更低的电极材料对降低开关在脉冲峰值附近击穿时的时延抖动效果有限。提出的改进方法为:减小开关均压电阻阻值,显著延长触发间隙的有效燃弧时间,消除预电离注入时间及抖动的影响。采用改进方法时可以使开关在工作电压300~800 kV、前沿100 ns、180 ns的脉冲峰值附近击穿时的时延抖动分别小于1.3 ns、2.8 ns。Abstract: Influence factors of the breakdown delay jitter of a self-triggered UV-illuminated switch are studied. It indicates that the switch electric field at the injection time of pre-ionization is the decisive factor of the time jitter when the capacitor discharge stage of the trigger gap works. Increasing the operating coefficient and using electrode material with lower working function cannot remarkably reduce the time jitter when the switch breaks down near the peak time. The improvement method is to reduce the value of parallel resistors, which can extend the duration of sufficient arcing of the trigger gap and eliminate the influence of pre-ionization injection time and its jitter. By adapting this method, the time jitter is less than 1.3 ns or 2.8 ns under a pulse rise time of 100 ns or 180 ns when the operating voltage is 300−800 kV.
-
Key words:
- gas switch /
- pre-ionization /
- self-triggering /
- pulsed breakdown time delay /
- jitter
-
表 1 开关击穿特性数据(R=49 kΩ,去除Rtr)
Table 1. Breakdown characteristics of the switch (R=49 kΩ, Rtr removed)
p/MPa mean breakdown
time delay ${\bar t}_{\rm{d}}$/nsbreakdown time
delay jitter tj/nsmean breakdown
voltage ${\bar U}_{\rm{b}}$/kVpercentage of front
edge breakdown/%0.1 83.6 13.2 249.7 52.6 0.2 81.1 7.7 365.5 70.0 0.3 99.9 9.0 485.0 100 0.4 99.3 3.3 513.1 0.5 96.9 2.5 617.1 0.6 96.2 3.2 703.3 0.7 97.5 3.5 794.4 表 2 开关击穿特性数据(R=49 kΩ,Rtr=4.5 kΩ)
Table 2. Breakdown characteristics of the switch (R=49 kΩ, Rtr=4.5 kΩ)
p/MPa mean breakdown
time delay ${\bar t}_{\rm{d}}$/nsbreakdown time
delay jitter tj/nsmean breakdown
voltage ${\bar U}_{\rm{b}}$/kVpercentage of front
edge breakdown/%0.1 72.6 4.9 271.9 100 0.2 88.3 5.8 358.2 0.3 95.5 6.8 459.6 88.0 0.4 98.0 3.9 553.1 98.0 0.5 92.3 3.1 663.1 94.0 0.6 95.5 2.1 755.8 100 0.7 99.0 2.4 839.0 表 3 开关击穿特性数据(R=49 kΩ,Rtr=2.2 kΩ)
Table 3. Breakdown characteristics of the switch (R=49 kΩ, Rtr=2.2 kΩ)
p/MPa mean breakdown
time delay ${\bar t}_{\rm{d}}$/nsbreakdown time
delay jitter tj/nsmean breakdown
voltage ${\bar U}_{\rm{b}}$/kVpercentage of front
edge breakdown/%0.1 99.4 2.5 193.2 100 0.2 99.5 2.0 311.3 0.3 99.1 0.9 423.9 0.4 101.2 1.2 519.2 0.5 100.2 1.0 630.8 0.6 100.2 1.6 717.9 0.7 99.1 1.6 804.7 表 4 开关击穿特性数据(R=49 kΩ,Rtr=2.2 kΩ,脉冲前沿100 ns)
Table 4. Breakdown characteristics of the switch (R=49 kΩ, Rtr=2.2 kΩ, pulse rise time=100 ns)
p/MPa mean breakdown
time delay ${\bar t}_{\rm{d}}$/nsbreakdown time
delay jitter tj/nsmean breakdown
voltage ${\bar U}_{\rm{b}}$/kVbreakdown voltage
jitter/%0.4 101.2 1.2 519.2 0.47 0.5 100.2 1.0 630.8 0.36 0.6 100.2 1.6 717.9 0.42 0.7 99.1 1.6 804.7 0.35 表 5 开关击穿特性数据(R=49 kΩ,Rtr=2.2 kΩ,脉冲前沿180 ns)
Table 5. Breakdown characteristics of the switch (R=49 kΩ, Rtr=2.2 kΩ, pulse rise time=180 ns)
p/MPa mean breakdown
time delay ${\bar t}_{\rm{d}}$/nsbreakdown time
delay jitter tj/nsmean breakdown
voltage ${\bar U}_{\rm{b}}$/kVbreakdown voltage
jitter/%0.4 169.0 7.1 505.0 0.84 0.5 169.7 5.7 603.9 0.54 0.6 169.2 7.8 708.9 0.52 0.7 169.4 5.3 780.2 0.66 -
[1] 冯寒亮, 刘逸飞, 刘峰. 美国海军全舰电磁脉冲模拟器发展综述[J]. 中国舰船研究, 2020, 15(5):69-78. (Feng Hanliang, Liu Yifei, Liu Feng. An overview on the development of the U. S. navy full ship electromagnetic pulse simulators[J]. Chinese Journal of Ship Research, 2020, 15(5): 69-78Feng Hanliang, Liu Yifei, Liu Feng. An overview on the development of the U. S. navy full ship electromagnetic pulse simulators[J]. Chinese Journal of Ship Research, 2020, 15(5): 69-78 [2] 谢彦召, 王赞基, 王群书, 等. 高空核爆电磁脉冲波形标准及特征分析[J]. 强激光与粒子束, 2003, 15(8):781-787. (Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 2003, 15(8): 781-787Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 2003, 15(8): 781-787 [3] Bailey V, Carboni V, Eichenberger C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2554-2558. doi: 10.1109/TPS.2010.2065245 [4] 王天驰, 陈伟, 王海洋, 等. 双极性加载脉冲源中储开关同步击穿特性[J]. 高电压技术, 2021, 47(9):3387-3395. (Wang Tianchi, Chen Wei, Wang Haiyang, et al. Synchronous breakdown characteristic of transfer switches in a bipolar pulse generator[J]. High Voltage Engineering, 2021, 47(9): 3387-3395Wang Tianchi, Chen Wei, Wang Haiyang, et al. Synchronous breakdown characteristic of transfer switches in a bipolar pulse generator[J]. High Voltage Engineering, 2021, 47(9): 3387-3395 [5] Li Junna, Jia Wei, Tang Junping, et al. A 3-MV low-jitter UV-illumination switch[J]. IEEE Transactions on Plasma Science, 2013, 41(2): 360-364. doi: 10.1109/TPS.2012.2237418 [6] Naff J T. Spark gaps for EMP and SREMP pulsers[C]//Proceedings of 2009 IEEE Pulsed Power Conference. 2009: 322-331. [7] Li Junna, Chen Weiqing, Chen Zhiqiang, et al. Influences of electric field on the jitter of ultraviolet-illuminated switch under pulsed voltages[J]. Physics of Plasmas, 2014, 21: 033509. doi: 10.1063/1.4869334 [8] Wang Tianchi, Wang Haiyang, Chen Wei, et al. A calculation model for breakdown time delay and jitter of gas switches under hundred-nanosecond pulses and its application in a self-triggered pre-ionized switch[J]. Plasma Science and Technology, 2021, 23: 115507. doi: 10.1088/2058-6272/ac2358 [9] Lehr J, Ron P. Foundations of pulsed power technology[M]. Hoboken: John Wiley & Sons, 2017. [10] Bradley L P. Preionization control of streamer propagation[J]. Journal of Applied Physics, 1972, 43(3): 886-890. doi: 10.1063/1.1661299 [11] Flowers J W. The channel of the spark discharge[J]. Physical Review, 1943, 64(7/8): 225-235.