Electric field probe calibration and improvement method based on open TEM cell
-
摘要: 目前的电场探头标定实验大多只考虑TEM小室结构和性能的影响,在校准实验中,探头的放入使得标定结果产生了很大的偏差,相较于TEM小室,电场探头的尺寸是产生误差的主要原因。以开放式TEM小室为基础,考虑了实际模型和电场探头的影响,利用三维电磁仿真软件,从时域角度研究了不同结构和尺寸TEM小室的辐射场分布,并从频域角度对TEM小室的S参数进行分析。比较了探头放入小室前后的误差,并根据计算结果引入了电场的校准公式。为改善探头对电场的影响,设计了一种新型结构,结果表明,新结构在保证带宽的同时,提高了电场的均匀性和探头标定的准确度。Abstract: Most of the calibration experiments of the electric field probe only consider the influence of the structure and performance of the TEM cell. In the calibration experiment, the placement of the probe makes the calibration result produce a large deviation. Therefore, the main reason for the error is the size of the probe, rather than the TEM cell. Taking the actual model and electric field probe into account, in this paper, the radiation field distribution of TEM cells with different structures and sizes is studied from the time domain perspective based on open TEM cells, while the S-parameters of TEM are analyzed from the frequency domain perspective using 3D electromagnetic simulation software. In addition, this paper compares the errors before and after the probe is placed in the chamber, and introduces the electric field calibration formula based on the calculation results. In order to improve the influence of the probe on the electric field, a new structure was designed. The results show that the new structure not only guarantees the bandwidth, but also improves the uniformity of the electric field and the accuracy of the probe calibration, which provides a new idea for the design of the TEM cell and the calibration of the probe.
-
Key words:
- TEM cell /
- electric field probe /
- probe disturbance /
- electric field uniformity /
- calibration formula
-
表 1 电场分布及误差
Table 1. Electric field distribution and error
measuring
point/mmamplitude/(V·m−1) error/% amplitude/(V·m−1) error/% amplitude/(V·m−1) error/% amplitude/(V·m−1) error/% d=149 mm d=199 mm d=249 mm d=299 mm (0,0, 1) 68843 2.56 51550 2.59 41207 2.60 34334 2.66 (0,0, 40) 68197 1.61 51313 2.11 41065 2.25 34184 2.21 (0,0, 80) 66901 0.32 50671 0.84 40887 1.81 34032 1.76 (0,0, 120) 65741 1.77 49910 0.46 40223 0.15 33775 0.99 (0,0, 160) — — 49318 1.86 39891 0.67 33401 0.12 (0,0, 200) — — — — 39573 1.46 33063 1.14 (0,0, d-1) 65501 2.40 49106 2.28 39199 2.40 32623 2.45 表 2 放入探头的电场分布及误差
Table 2. Electric field distribution and error after the probe is placed
insulation
sizemeasuring
point/mmamplitude/(V·m−1) error/% amplitude/(V·m−1) error/% amplitude/(V·m−1) error/% amplitude/(V·m−1) error/% d=149 mm d=199 mm d=249 mm d=299 mm l1=2 mm
l2=18 mm(0,0, 1) 78275 16.63 54525 8.51 42449 5.70 34973 4.57 (0,0, 40) 80811 20.41 54913 9.28 42541 5.93 35071 4.86 (0,0, 80) 88251 31.49 56975 13.38 42817 6.61 35121 5.01 (0,0, 120) — — 62002 23.38 44270 10.23 35275 5.47 (0,0, 160) — — — — 47509 18.30 36282 8.48 (0,0, 200) — — — — — — 39134 17.01 (0,0, d−51) 89744 33.72 64210 27.78 51174 27.42 43536 30.17 l1=10 mm
l2=10 mm(0,0, 1) 81041 20.75 55809 11.06 43097 7.31 35154 5.11 (0,0, 40) 84301 25.61 56469 12.37 43213 7.60 35284 5.50 (0,0, 80) 93231 38.91 59454 18.31 43772 8.99 35418 5.90 (0,0, 120) — — 66239 31.82 45946 14.40 35702 6.75 (0,0, 160) — — — — 51000 26.99 37055 10.79 (0,0, 200) — — — — — — 40062 19.78 (0,0, d−51) 95022 41.58 69146 37.60 55534 38.28 45989 37.51 表 3 改进结构的电场分布及误差
Table 3. Electric field distribution and error of improved structure
measuring
point/mmamplitude/(V·m−1) error/(%) amplitude/(V·m−1) error/% amplitude/(V·m−1) error/% amplitude/(V·m−1) error/% d=149 mm d=199 mm d=249 mm d=299 mm (0,0, 1) 68829 2.56 51688 2.85 41286 2.80 34512 3.19 (0,0, 40) 68313 1.79 51361 2.21 41127 2.41 34213 2.30 (0,0, 80) 67034 0.12 50797 1.09 40824 1.65 34019 1.72 (0,0, 120) 65880 1.84 50065 0.37 40345 0.46 33720 0.83 (0,0, 160) — — 49405 1.68 39871 0.72 33438 0.02 (0,0, 200) — — — — 39514 1.61 33120 0.97 (0,0, d−1) 65598 2.26 49214 2.06 39332 2.06 32738 2.11 -
[1] 李欣, 张雪芹, 曹保锋, 等. 电磁脉冲电场探头校准装置及不确定度评定[J]. 核电子学与探测技术, 2014, 34(8):1007-1010,1023. (Li Xin, Zhang Xueqin, Cao Baofeng, et al. Standard device of nuclear explosion electromagnetic pulse and evaluation of uncertainty[J]. Nuclear Electronics & Detection Technology, 2014, 34(8): 1007-1010,1023 doi: 10.3969/j.issn.0258-0934.2014.08.021Li Xin, Zhang Xueqin, Cao Baofeng, et al. Standard device of nuclear explosion electromagnetic pulse and evaluation of uncertainty[J]. Nuclear Electronics & Detection Technology, 2014, 34(8): 1007-1010, 1023 doi: 10.3969/j.issn.0258-0934.2014.08.021 [2] 郭启勇, 梁琼崇, 骆德汉, 等. 基于TEM小室的电场探头校准及其不确定度评定[J]. 广东工业大学学报, 2016, 33(3):19-25. (Guo Qiyong, Liang Qiongchong, Luo Dehan, et al. An electric field probe calibration based on TEM cell and evaluation of its uncertainty[J]. Journal of Guangdong University of Technology, 2016, 33(3): 19-25 doi: 10.3969/j.issn.1007-7162.2016.03.004Guo Qiyong, Liang Qiongchong, Luo Dehan, et al. An electric field probe calibration based on TEM cell and evaluation of its uncertainty[J]. Journal of Guangdong University of Technology, 2016, 33(3): 19-25 doi: 10.3969/j.issn.1007-7162.2016.03.004 [3] 李丹. 20Hz-100MHz电场探头校准系统的研究[D]. 北京: 北京交通大学, 2016Li Dan. Research on electric-field probe calibration system for 20Hz-100MHz[D]. Beijing: Beijing Jiaotong University, 2016 [4] 张骏驰. 磁场探头校准系统的研究[D]. 北京: 北京邮电大学, 2008Zhang Junchi. Research on the calibration system of magnetic field probe[D]. Beijing: Beijing University of Posts and Telecommunications, 2008 [5] 谢鸣, 王维龙, 黄攀, 等. 10MHz~1GHz电场探头校准系统[J]. 安全与电磁兼容, 2007(5):23-27. (Xie Ming, Wang Weilong, Huang Pan, et al. Calibration system for electric field probe in the range of 10 MHz to 1 GHz[J]. Safety & EMC, 2007(5): 23-27 doi: 10.3969/j.issn.1005-9776.2007.05.004Xie Ming, Wang Weilong, Huang Pan, et al. Calibration system for electric field probe in the range of 10 MHz to 1 GHz[J]. Safety & EMC, 2007(5): 23-27 doi: 10.3969/j.issn.1005-9776.2007.05.004 [6] 刘潇, 李渤, 谢鸣. 基于TEM小室的探头校准系统不确定度评定[J]. 计量学报, 2015, 36(3):318-323. (Liu Xiao, Li Bo, Xie Ming. The uncertainty estimation for the probe calibration results employing a TEM cell[J]. Acta Metrologica Sinica, 2015, 36(3): 318-323 doi: 10.3969/j.issn.1000-1158.2015.03.20Liu Xiao, Li Bo, Xie Ming. The uncertainty estimation for the probe calibration results employing a TEM cell[J]. Acta Metrologica Sinica, 2015, 36(3): 318-323 doi: 10.3969/j.issn.1000-1158.2015.03.20 [7] 刘逸飞, 马良, 程引会, 等. 基于光纤传输的灵敏度自校准脉冲电场测量系统[J]. 高电压技术, 2021, 47(4):1478-1484. (Liu Yifei, Ma Liang, Cheng Yinhui, et al. Pulse electric field measurement system with sensitivity self-calibration based on optical fiber transmission[J]. High Voltage Engineering, 2021, 47(4): 1478-1484Liu Yifei, Ma Liang, Cheng Yinhui, et al. Pulse electric field measurement system with sensitivity self-calibration based on optical fiber transmission[J]. High Voltage Engineering, 2021, 47(4): 1478-1484 [8] 王启武, 石立华, 李炎新, 等. HEMP模拟器的改进及测量探头的设计[J]. 安全与电磁兼容, 2011(2):61-64. (Wang Qiwu, Shi Lihua, Li Yanxin, et al. Development of HEMP simulator and design of D-dot probe for HEMP measurement[J]. Safety & EMC, 2011(2): 61-64 doi: 10.3969/j.issn.1005-9776.2011.02.014Wang Qiwu, Shi Lihua, Li Yanxin, et al. Development of HEMP simulator and design of D-dot probe for HEMP measurement[J]. Safety & EMC, 2011(2): 61-64 doi: 10.3969/j.issn.1005-9776.2011.02.014 [9] 陈竞, 石立华, 李炎新, 等. 光纤传输脉冲电场传感器的时域校准[J]. 安全与电磁兼容, 2006(6):86-88,104. (Chen Jing, Shi Lihua, Li Yanxin, et al. Time domain calibration of pulsed electric field sensors with fiber optic transmission system[J]. Safety & EMC, 2006(6): 86-88,104 doi: 10.3969/j.issn.1005-9776.2006.06.012Chen Jing, Shi Lihua, Li Yanxin, et al. Time domain calibration of pulsed electric field sensors with fiber optic transmission system[J]. Safety & EMC, 2006(6): 86-88, 104 doi: 10.3969/j.issn.1005-9776.2006.06.012 [10] Jiang Yunsheng, Meng Cui, Jin Hanbing, et al. Determining the effect of relative size of sensor on calibration accuracy of TEM cells[J]. Nuclear Science and Techniques, 2019, 30(6): 78-87. [11] Lu Xinhua. Characteristic impedance variation of the TEM cell caused by the introduction of the equipment under test[C]//Proceedings of 1999 IEEE International Symposium on Electromagnetic Compatibility. 1999: 596-599. [12] 任翔, 马帅帅, 李静, 等. 基于TEM室的微波功率器件电磁兼容测试技术[J]. 舰船电子工程, 2019, 39(8):166-168,189. (Ren Xiang, Ma Shuaishuai, Li Jing, et al. Electromagnetic compatibility testing technology of microwave power device based on TEM room[J]. Ship Electronic Engineering, 2019, 39(8): 166-168,189 doi: 10.3969/j.issn.1672-9730.2019.08.040Ren Xiang, Ma Shuaishuai, Li Jing, et al. Electromagnetic compatibility testing technology of microwave power device based on TEM room[J]. Ship Electronic Engineering, 2019, 39(8): 166-168, 189 doi: 10.3969/j.issn.1672-9730.2019.08.040 [13] 陈军, 万发雨, 范盼. 新型宽带横电磁波小室的设计[J]. 合肥工业大学学报(自然科学版), 2016, 39(7):938-942. (Chen Jun, Wan Fayu, Fan Pan. Design of novel broadband TEM cell[J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(7): 938-942Chen Jun, Wan Fayu, Fan Pan. Design of novel broadband TEM cell[J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(7): 938-942 [14] STD 1309-2013, IEEE standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz[S].