Vacuum performance of Ti-Zr-V getter films deposited on narrow tubes
-
摘要: 利用直流磁控溅射方法在单晶硅片和内径为22 mm、长度分别为500 mm和1500 mm的银铜管道内壁镀制了Ti-Zr-V非蒸散型吸气剂薄膜,并对镀膜管道的极限真空进行了测量。结果显示:在180 ℃下激活24 h后,镀制了Ti-Zr-V薄膜真空管道的极限真空度可以达到9.2×10−10 Pa。在关闭测试系统和离子泵的阀门后,系统仅依靠Ti-Zr-V薄膜的吸气依然能够维持在9×10−9 Pa很长时间。利用测试粒子蒙特卡罗法对薄膜的抽速和容量进行了分析和测量,结果显示,Ti-Zr-V薄膜对CO的初始粘附系数最大可以达到0.3,容量可以达到1.2个分子层。Abstract: Non-evaporable getter films are widely used in particle accelerators. It has become an integral part of many particle accelerators. Ti-Zr-V films were deposited on Si substrates and straight and bent Ag-Cu tubes with an inner diameter of 22 mm by DC magnetron sputtering. After baked at 180 ℃ for 24 h, the ultimate vacuum of the coated tubes reached 9.2×10−10 Pa. The tubes with activated getter films maintained at 9×10−9 Pa after closing tubes and ion pump valve. The pumping speed and capacity of Ti-Zr-V films were measured by Test Particle Monte Carlo method. The results show that the best CO sticking probability reaches 0.3, with a pumping capacity of 1.2 monolayer.
-
表 1 镀膜参数
Table 1. Coating parameters
working
pressure /Pasputtering
gasworking
current/Apulsed
frequency/kHzbased
pressure/Padepositing
time/hmagnetic field
strength/T1 Kr 0.1 50 1×10−5 8 0.02 表 2 极限真空测试结果
Table 2. Results of ultimate vacuum measurement
time/day pressure/Pa long tube short tube 1 2.08×10−9 9.26×10−9 10 2.04×10−9 1.77×10−8
close valve30 1.96×10−9 3.17×10−8 60 1.52×10−9 2.82×10−8 90 1.32×10−9 1.71×10−8 120 1.02×10−9 9.30×10−9 150 9.6×10−10 9.40×10−9 180 9.2×10−10 9.18×10−9 360 — 8.20×10−9 -
[1] Sun Zhenbo, Shang Lei, Shang Fenglei, et al. Simulation study of longitudinal injection scheme for HALS with a higher harmonic cavity system[J]. Nuclear Science and Techniques, 2019, 30: 113. doi: 10.1007/s41365-019-0627-x [2] 张波, 王勇, 尉伟, 等. 直流磁控溅射法在管道内壁镀TiZrV薄膜[J]. 强激光与粒子束, 2010, 22(9):2124-2128. (Zhang Bo, Wang Yong, Wei Wei, et al. Deposition of TiZrV coatings onto inner wall of stainless steel pipe by DC magnetron sputtering[J]. High Power Laser and Particle Beams, 2010, 22(9): 2124-2128 doi: 10.3788/HPLPB20102209.2124 [3] Benvenuti C, Chiggiato P, Cicoira F, et al. Decreasing surface outgassing by thin film getter coatings[J]. Vacuum, 1998, 50(1/2): 57-63. [4] Benvenuti C, Chiggiato P, Cicoira F, et al. Nonevaporable getter films for ultrahigh vacuum applications[J]. Journal of Vacuum Science & Technology A, 1998, 16(1): 148-154. [5] Jimenez J M. LHC: the world's largest vacuum systems being operated at CERN[J]. Vacuum, 2009, 84(1): 2-7. doi: 10.1016/j.vacuum.2009.05.015 [6] Al-Dmour E, Grabski M J. The vacuum system of MAX IV storage rings: installation and conditioning[C]//Proceedings of the 8th International Particle Accelerator Conference. Copenhagen, Denmark, 2017: 3468-3470. [7] Hahn M. Operational experience and relation to deposition process for NEG-coated chambers installed on the ESRF electron storage ring[J]. Vacuum, 2007, 81(6): 759-761. doi: 10.1016/j.vacuum.2005.11.051 [8] Malyshev O B, Cox M P. Design modelling and measured performance of the vacuum system of the diamond light source storage ring[J]. Vacuum, 2012, 86(11): 1692-1696. doi: 10.1016/j.vacuum.2012.03.015 [9] Li C C, Huang J L, Lin R J, et al. Activation characterization of non-evaporable Ti–Zr–V getter films by synchrotron radiation photoemission spectroscopy[J]. Thin Solid Films, 2009, 517(20): 5876-5880. doi: 10.1016/j.tsf.2007.06.102 [10] Ge Xiaoqin, Wang Yigang, Shao Jieqiong, et al. Testing the activation temperature of non-evaporable Ti-Zr-Hf-V getter films by XPS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 967: 163864. doi: 10.1016/j.nima.2020.163864 [11] Prodromides A E, Scheuerlein C, Taborelli M. Lowering the activation temperature of TiZrV non-evaporable getter films[J]. Vacuum, 2001, 60(1/2): 35-41. [12] Benvenuti C, Chiggiato P, Mongelluzzo A, et al. Influence of the elemental composition and crystal structure on the vacuum properties of Ti-Zr-V nonevaporable getter films[J]. Journal of Vacuum Science & Technology A, 2001, 19(6): 2925-2930. [13] Malyshev O B, Valizadeh R, Colligon J S, et al. Influence of deposition pressure and pulsed dc sputtering on pumping properties of Ti–Zr–V nonevaporable getter films[J]. Journal of Vacuum Science & Technology A, 2009, 27(3): 521-530. [14] Malyshev O B, Middleman K J, Colligon J S, et al. Activation and measurement of nonevaporable getter films[J]. Journal of Vacuum Science & Technology A, 2009, 27(2): 321-327. [15] Malyshev O B, Middleman K J. Test particle monte-Carlo modelling of installations for NEG film pumping properties evaluation[J]. Vacuum, 2009, 83(6): 976-979. doi: 10.1016/j.vacuum.2008.11.008