[1] |
Vaughan J R M. Multipactor[J]. IEEE Transactions on Electron Devices, 1988, 35(7): 1172-1180. doi: 10.1109/16.3387
|
[2] |
翟永贵, 李记肖, 王洪广, 等. 微波器件微放电阈值功率自适应扫描方法[J]. 强激光与粒子束, 2018, 30:073006. (Zhai Yonggui, Li Jixiao, Wang Hongguang, et al. Adaptive scanning method for multipactor threshold prediction in microwave devices[J]. High Power Laser and Particle Beams, 2018, 30: 073006 doi: 10.11884/HPLPB201830.170530
|
[3] |
王新波, 崔万照, 魏焕, 等. 微放电试验中种子电子加载方法比较[J]. 强激光与粒子束, 2018, 30:063010. (Wang Xinbo, Cui Wanzhao, Wei Huan, et al. Comparative study of electron seeding in multipactor test[J]. High Power Laser and Particle Beams, 2018, 30: 063010 doi: 10.11884/HPLPB201830.170310
|
[4] |
刘婉, 翁明, 殷明, 等. 宽气压范围空气中微波击穿电场的计算公式[J]. 强激光与粒子束, 2018, 30:113001. (Liu Wan, Weng Ming, Yin Ming, et al. Formula of microwave breakdown electric field calculation within wide pressure range in air[J]. High Power Laser and Particle Beams, 2018, 30: 113001 doi: 10.11884/HPLPB201830.180086
|
[5] |
何鋆, 杨晶, 苗光辉, 等. 高性能多功能介质二次电子发射特性研究平台[J]. 强激光与粒子束, 2020, 32:033003. (He Yun, Yang Jing, Miao Guanghui, et al. High-performance multifunctional apparatus for studying secondary electron emission characteristics of dielectric[J]. High Power Laser and Particle Beams, 2020, 32: 033003 doi: 10.11884/HPLPB202032.190318
|
[6] |
Yang Jing, Cui Wanzhao, Li Yun, et al. Investigation of argon ion sputtering on the secondary electron emission from gold samples[J]. Applied Surface Science, 2016, 382: 88-92. doi: 10.1016/j.apsusc.2016.03.060
|
[7] |
Schaub S C, Shapiro M A, Temkin R J. Measurement of dielectric multipactor thresholds at 110 GHz[J]. Physical Review Letters, 2019, 123: 175001. doi: 10.1103/PhysRevLett.123.175001
|
[8] |
Berenguer A, Coves Á, Mesa F, et al. Analysis of multipactor effect in a partially dielectric-loaded rectangular waveguide[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 259-265. doi: 10.1109/TPS.2018.2880652
|
[9] |
Zhang Ziyi, Sun Yanzi, Cui Wanzhao, et al. An analytical model of one-sided multipactor on a dielectric of a metal surface for spacecraft application[J]. IEEE Transactions on Electron Devices, 2019, 66(11): 4921-4927. doi: 10.1109/TED.2019.2937752
|
[10] |
Rozario N, Lenzing H F, Reardon K F, et al. Investigation of Telstar 4 spacecraft Ku-band and C-band antenna components for multipactor breakdown[J]. IEEE Transactions on Microwave Theory and Techniques, 1994, 42(4): 558-564. doi: 10.1109/22.285060
|
[11] |
González-Iglesias D, Gimeno B, Boria V E, et al. Multipactor effect in a parallel-plate waveguide partially filled with magnetized ferrite[J]. IEEE Transactions on Electron Devices, 2014, 61(7): 2552-2557. doi: 10.1109/TED.2014.2322395
|
[12] |
Shalaby M, Peccianti M, Ozturk Y, et al. A magnetic non-reciprocal isolator for broadband terahertz operation[J]. Nature Communications, 2013, 4: 1558. doi: 10.1038/ncomms2572
|
[13] |
González-Iglesias D, Gómez Á, Gimeno B, et al. Analysis of multipactor RF breakdown in a waveguide containing a transversely magnetized ferrite[J]. IEEE Transactions on Electron Devices, 2016, 63(12): 4939-4947. doi: 10.1109/TED.2016.2614370
|
[14] |
Vague J, Melgarejo J C, Boria V E, et al. Experimental validation of multipactor effect for ferrite materials used in L- and S-band nonreciprocal microwave components[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(6): 2151-2161. doi: 10.1109/TMTT.2019.2915546
|
[15] |
王洪广, 翟永贵, 李记肖, 等. 基于频域电磁场的微波器件微放电阈值快速粒子模拟[J]. 物理学报, 2016, 65:237901. (Wang Hongguang, Zhai Yonggui, Li Jixiao, et al. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions[J]. Acta Physica Sinica, 2016, 65: 237901 doi: 10.7498/aps.65.237901
|
[16] |
Zhai Yonggui, Wang Hongguang, Zhang Lei, et al. Effect of secondary emission yield and initial charge of dielectric material on multipactor in parallel-plate dielectric-loaded waveguide[J]. IEEE Transactions on Electron Devices, 2019, 66(12): 5333-5338. doi: 10.1109/TED.2019.2947641
|
[17] |
翟永贵, 王瑞, 王洪广, 等. 铁氧体环形器微放电阈值快速粒子模拟[J]. 真空电子技术, 2017(2):11-13,28. (Zhai Yonggui, Wang Rui, Wang Hongguang, et al. Fast particle-in-cell method for multipactor threshold calculation of ferrite circulator[J]. Vacuum Electronics, 2017(2): 11-13,28
|
[18] |
Aguilera L, Montero I, Olano L, et al. Secondary emission yield at low-primary energies of magnetic materials for anti-multipactor applications[C]//Proceedings of the International Workshop on Multipactor, Corona and Passive Intermodulation. Valencia, Spain, 2014: S126.
|
[19] |
Chen C H, Chang C, Liu W Y, et al. Improving the microwave window breakdown threshold by using a fluorinated, periodically patterned surface[J]. Journal of Applied Physics, 2013, 114: 163304. doi: 10.1063/1.4826627
|
[20] |
Ye Ming, He Yongning, Hu Shaoguang, et al. Investigation into anomalous total secondary electron yield for micro-porous Ag surface under oblique incidence conditions[J]. Journal of Applied Physics, 2013, 114: 104905. doi: 10.1063/1.4821138
|
[21] |
叶鸣, 贺永宁, 王瑞, 等. 基于微陷阱结构的金属二次电子发射系数抑制研究[J]. 物理学报, 2014, 63:147901. (Ye Ming, He Yongning, Wang Rui, et al. Suppression of secondary electron emission by micro-trapping structure surface[J]. Acta Physica Sinica, 2014, 63: 147901 doi: 10.7498/aps.63.147901
|
[22] |
Li Yun, Ye Ming, He Yongning, et al. Surface effect investigation on multipactor in microwave components using the EM-PIC method[J]. Physics of Plasmas, 2017, 24: 113505. doi: 10.1063/1.5003124
|