留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大功率铁磁性微波部件微放电演变机理与抑制

李韵 封国宝 谢贵柏 苗光辉 李小军 崔万照 贺永宁

李韵, 封国宝, 谢贵柏, 等. 大功率铁磁性微波部件微放电演变机理与抑制[J]. 强激光与粒子束, 2022, 34: 063002. doi: 10.11884/HPLPB202234.210479
引用本文: 李韵, 封国宝, 谢贵柏, 等. 大功率铁磁性微波部件微放电演变机理与抑制[J]. 强激光与粒子束, 2022, 34: 063002. doi: 10.11884/HPLPB202234.210479
Li Yun, Feng Guobao, Xie Guibai, et al. Multipactor evolution and suppression in high-power ferromagnetic components[J]. High Power Laser and Particle Beams, 2022, 34: 063002. doi: 10.11884/HPLPB202234.210479
Citation: Li Yun, Feng Guobao, Xie Guibai, et al. Multipactor evolution and suppression in high-power ferromagnetic components[J]. High Power Laser and Particle Beams, 2022, 34: 063002. doi: 10.11884/HPLPB202234.210479

大功率铁磁性微波部件微放电演变机理与抑制

doi: 10.11884/HPLPB202234.210479
基金项目: 国家自然科学基金面上项目(12175176);中国航天科技集团有限公司自主创新项目(Y20-JTKJCX-01);陕西省特支计划青年拔尖人才项目
详细信息
    作者简介:

    李 韵,liy74@cast504.com

  • 中图分类号: TN61;O462.2

Multipactor evolution and suppression in high-power ferromagnetic components

  • 摘要: 铁氧体环行器是承载航天器微波系统大功率的关键器件,其大功率微放电效应是影响航天器在轨安全、可靠运行的瓶颈问题。从影响微放电效应的关键因素——二次电子发射特性出发,提出铁磁性微波部件微放电效应物理演变模型,揭示了铁磁性微波部件内部初始自由电子与二次电子运动的空间规律;通过改变铁磁性微波部件表面二次电子发射特性,揭示了铁磁性微波部件抗微放电优化设计的物理原理。在S频段铁氧体环行器中验证了基于表面二次电子发射特性的微放电效应抑制,将器件的微放电阈值从380 W提高至3400 W以上,提升效率大于900%。
  • 图  1  铁氧体之间发生微放电时电子运动轨迹的理想模型

    Figure  1.  Scheme of multipactor electrons moving between ferrite dielectrics

    图  2  具有不同相对尺寸 Sr微孔结构的铁氧体SEY计算结果

    Figure  2.  Secondary electron yields (SEYs) on the ferrite dielectric with different Sr

    图  3  不同电荷积累场下的铁氧体SEY计算结果

    Figure  3.  SEYs on the ferrite dielectric with different Edc

    图  4  不同静磁场下的铁氧体SEY计算结果

    Figure  4.  SEYs on the ferrite dielectric with different B0

    图  5  铁氧体样片表面形貌

    Figure  5.  Surface morphology of ferrite sample

    图  6  铁氧体样片SEY测量结果与计算结果对比

    Figure  6.  Comparison of measured and calculated SEYs on the ferrite samples

    图  7  铁氧体环行器实物与电性能参数对比

    Figure  7.  Comparison of electrical performance in ferrite circulator

  • [1] Vaughan J R M. Multipactor[J]. IEEE Transactions on Electron Devices, 1988, 35(7): 1172-1180. doi: 10.1109/16.3387
    [2] 翟永贵, 李记肖, 王洪广, 等. 微波器件微放电阈值功率自适应扫描方法[J]. 强激光与粒子束, 2018, 30:073006. (Zhai Yonggui, Li Jixiao, Wang Hongguang, et al. Adaptive scanning method for multipactor threshold prediction in microwave devices[J]. High Power Laser and Particle Beams, 2018, 30: 073006 doi: 10.11884/HPLPB201830.170530
    [3] 王新波, 崔万照, 魏焕, 等. 微放电试验中种子电子加载方法比较[J]. 强激光与粒子束, 2018, 30:063010. (Wang Xinbo, Cui Wanzhao, Wei Huan, et al. Comparative study of electron seeding in multipactor test[J]. High Power Laser and Particle Beams, 2018, 30: 063010 doi: 10.11884/HPLPB201830.170310
    [4] 刘婉, 翁明, 殷明, 等. 宽气压范围空气中微波击穿电场的计算公式[J]. 强激光与粒子束, 2018, 30:113001. (Liu Wan, Weng Ming, Yin Ming, et al. Formula of microwave breakdown electric field calculation within wide pressure range in air[J]. High Power Laser and Particle Beams, 2018, 30: 113001 doi: 10.11884/HPLPB201830.180086
    [5] 何鋆, 杨晶, 苗光辉, 等. 高性能多功能介质二次电子发射特性研究平台[J]. 强激光与粒子束, 2020, 32:033003. (He Yun, Yang Jing, Miao Guanghui, et al. High-performance multifunctional apparatus for studying secondary electron emission characteristics of dielectric[J]. High Power Laser and Particle Beams, 2020, 32: 033003 doi: 10.11884/HPLPB202032.190318
    [6] Yang Jing, Cui Wanzhao, Li Yun, et al. Investigation of argon ion sputtering on the secondary electron emission from gold samples[J]. Applied Surface Science, 2016, 382: 88-92. doi: 10.1016/j.apsusc.2016.03.060
    [7] Schaub S C, Shapiro M A, Temkin R J. Measurement of dielectric multipactor thresholds at 110 GHz[J]. Physical Review Letters, 2019, 123: 175001. doi: 10.1103/PhysRevLett.123.175001
    [8] Berenguer A, Coves Á, Mesa F, et al. Analysis of multipactor effect in a partially dielectric-loaded rectangular waveguide[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 259-265. doi: 10.1109/TPS.2018.2880652
    [9] Zhang Ziyi, Sun Yanzi, Cui Wanzhao, et al. An analytical model of one-sided multipactor on a dielectric of a metal surface for spacecraft application[J]. IEEE Transactions on Electron Devices, 2019, 66(11): 4921-4927. doi: 10.1109/TED.2019.2937752
    [10] Rozario N, Lenzing H F, Reardon K F, et al. Investigation of Telstar 4 spacecraft Ku-band and C-band antenna components for multipactor breakdown[J]. IEEE Transactions on Microwave Theory and Techniques, 1994, 42(4): 558-564. doi: 10.1109/22.285060
    [11] González-Iglesias D, Gimeno B, Boria V E, et al. Multipactor effect in a parallel-plate waveguide partially filled with magnetized ferrite[J]. IEEE Transactions on Electron Devices, 2014, 61(7): 2552-2557. doi: 10.1109/TED.2014.2322395
    [12] Shalaby M, Peccianti M, Ozturk Y, et al. A magnetic non-reciprocal isolator for broadband terahertz operation[J]. Nature Communications, 2013, 4: 1558. doi: 10.1038/ncomms2572
    [13] González-Iglesias D, Gómez Á, Gimeno B, et al. Analysis of multipactor RF breakdown in a waveguide containing a transversely magnetized ferrite[J]. IEEE Transactions on Electron Devices, 2016, 63(12): 4939-4947. doi: 10.1109/TED.2016.2614370
    [14] Vague J, Melgarejo J C, Boria V E, et al. Experimental validation of multipactor effect for ferrite materials used in L- and S-band nonreciprocal microwave components[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(6): 2151-2161. doi: 10.1109/TMTT.2019.2915546
    [15] 王洪广, 翟永贵, 李记肖, 等. 基于频域电磁场的微波器件微放电阈值快速粒子模拟[J]. 物理学报, 2016, 65:237901. (Wang Hongguang, Zhai Yonggui, Li Jixiao, et al. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions[J]. Acta Physica Sinica, 2016, 65: 237901 doi: 10.7498/aps.65.237901
    [16] Zhai Yonggui, Wang Hongguang, Zhang Lei, et al. Effect of secondary emission yield and initial charge of dielectric material on multipactor in parallel-plate dielectric-loaded waveguide[J]. IEEE Transactions on Electron Devices, 2019, 66(12): 5333-5338. doi: 10.1109/TED.2019.2947641
    [17] 翟永贵, 王瑞, 王洪广, 等. 铁氧体环形器微放电阈值快速粒子模拟[J]. 真空电子技术, 2017(2):11-13,28. (Zhai Yonggui, Wang Rui, Wang Hongguang, et al. Fast particle-in-cell method for multipactor threshold calculation of ferrite circulator[J]. Vacuum Electronics, 2017(2): 11-13,28
    [18] Aguilera L, Montero I, Olano L, et al. Secondary emission yield at low-primary energies of magnetic materials for anti-multipactor applications[C]//Proceedings of the International Workshop on Multipactor, Corona and Passive Intermodulation. Valencia, Spain, 2014: S126.
    [19] Chen C H, Chang C, Liu W Y, et al. Improving the microwave window breakdown threshold by using a fluorinated, periodically patterned surface[J]. Journal of Applied Physics, 2013, 114: 163304. doi: 10.1063/1.4826627
    [20] Ye Ming, He Yongning, Hu Shaoguang, et al. Investigation into anomalous total secondary electron yield for micro-porous Ag surface under oblique incidence conditions[J]. Journal of Applied Physics, 2013, 114: 104905. doi: 10.1063/1.4821138
    [21] 叶鸣, 贺永宁, 王瑞, 等. 基于微陷阱结构的金属二次电子发射系数抑制研究[J]. 物理学报, 2014, 63:147901. (Ye Ming, He Yongning, Wang Rui, et al. Suppression of secondary electron emission by micro-trapping structure surface[J]. Acta Physica Sinica, 2014, 63: 147901 doi: 10.7498/aps.63.147901
    [22] Li Yun, Ye Ming, He Yongning, et al. Surface effect investigation on multipactor in microwave components using the EM-PIC method[J]. Physics of Plasmas, 2017, 24: 113505. doi: 10.1063/1.5003124
  • 加载中
图(7)
计量
  • 文章访问数:  793
  • HTML全文浏览量:  365
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2022-01-18
  • 网络出版日期:  2022-02-16
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回