Development of solid-state platform for transient intense field test
-
摘要: 随脉冲功率技术向高重复频率、长寿命等方向发展,储能元件和开关元件在瞬态强场条件下的稳定性能检测十分必要。基于固态开关技术研制了一种百kV,μs时间尺度下的瞬态强场测试平台,主要由高压直流充电电源、初级单元、脉冲变压器、磁脉冲压缩网络、复位系统和测试腔体组成,实现了一体化结构,使用便利。首先,针对电容器测试条件,建立了完整的电路模型,详细设计了系统中各关键参量;然后,利用晶闸管组件作为初级单元控制开关,利用磁开关进行两级脉冲压缩,建立了实验装置;最后,给出了40 nF小批量陶瓷电容器的典型实验测试结果,测试电压50 kV,脉冲宽度1 μs,重复频率10 Hz,运行时间85 min(对应51 000个脉冲),平台稳定可靠性良好,为后续开展相关测试研究奠定了基础。Abstract: With the development of pulse power technology to high repetition rate and long life, it is necessary to test the stability of energy storage and switching components under transient intense field. This paper presents a solid-state platform for transient intense field test at several tens kilovolts with charging and discharging time in microsecond region. The platform consists of a high voltage power supply, a primary unit, a core-type pulse transformer, a magnetic compression network, core reset power supplies and a test cavity, hence it has an integrated structure and is easy to use. A circuit model is presented to optimize the electrical parameters of the platform. Then, the test platform is built up and experimented. A group of serial connected thyristors are used as control switch in the primary unit for pulse charging and high power magnetic switch is used for discharging in the test cavity. Preliminary results are obtained with ceramic capacitors of 40 nF under test, of which the test voltage is 50 kV, the pulse width is 1 μs with repetitive rate of 10 Hz and operation time of 85 min (51 000 pulses), indicating the platform is stable and reliable. The research results could setup good foundation for further investigation into related test.
-
表 1 测试平台电气参数
Table 1. Electrical parameters of the test platform
voltage/kV current/mA repetition rate/Hz test cell capacitance (typical)/nF test cell voltage (maximum)/kV core reset current/A 0~20 500 0~10 40 100 2 表 2 铁基非晶磁芯技术指标
Table 2. Specifications of the Fe-based amorphous core
core
materialouter
diameter/mminner
diameter/mmheight/mm thickness/μm width/mm Bs/T Br/T insulation per layer/
Vstacking
factor2605SA-1 406 274 20 25 20 ~1.56 ≥1.4 120 ~0.82 -
[1] 王淦昌. 序言[C]//全国高功率粒子束十年文集. 1995Wang Ganchang. Preface[C]//Preface of the Decade Selected Works of High Pulsed Power in China. 1995 [2] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003Zeng Zhengzhong. Introduction of pulsed power technology[M]. Xi′an: Shaanxi Technology Press, 2003 [3] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005 [4] 邓建军. 直线感应电子加速器[M]. 北京: 国防工业出版社, 2006Deng Jianjun. Linear induction electron accelerator[M]. Beijing: National Defense Industry Press, 2006 [5] 韩旻, 邹晓兵, 张贵新. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2006Han Min, Zou Xiaobing, Zhang Guixin. Application of pulsed power technology[M]. Beijing: Tsinghua University Press, 2006 [6] 布鲁姆H. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008Bluhm H. Pulsed power systems: principles and applications[M]. Wang Weihua, Zhang Chi, trans. Beijing: Tsinghua University Press, 2008 [7] 邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016Qiu Aici. Application of pulsed power technology[M]. Xi’an: Shaanxi Technology Press, 2016 [8] 江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(1):10-15. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (I) introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10-15 doi: 10.3788/HPLPB20122401.0010Jiang Weihua. Repetition rate pulsed power technology and its applications: (I) introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10-15 doi: 10.3788/HPLPB20122401.0010 [9] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 [10] Gao Jingming, Yang Hanwu, Li Song, et al. Investigation on a high power, low impedance, and long pulse generator based on magnetic switches[J]. IEEE Transactions on Plasma Science, 2014, 42(4): 988-992. doi: 10.1109/TPS.2014.2309608 [11] Domingos H, Quattro D P, Scaturro J. Breakdown in ceramic capacitors under pulsed high-voltage stress[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1978, 1(4): 423-428. doi: 10.1109/TCHMT.1978.1135298 [12] Matthews E J, Kristiansen M, Neuber A A. Capacitor evaluation for compact pulsed power[J]. IEEE Transactions on Plasma Science, 2010, 38(3): 500-508. doi: 10.1109/TPS.2009.2038218 [13] 马成刚, 李亚维, 李玺钦, 等. 重复频率电容器寿命测试平台[J]. 强激光与粒子束, 2014, 26:125002. (Ma Chenggang, Li Yawei, Li Xiqin, et al. Lifetime test platform for repetitive capacitors[J]. High Power Laser and Particle Beams, 2014, 26: 125002 doi: 10.11884/HPLPB201426.125002Ma Chenggang, Li Yawei, Li Xiqin, et al. Lifetime test platform for repetitive capacitors[J]. High Power Laser and Particle Beams, 2014, 26: 125002 doi: 10.11884/HPLPB201426.125002 [14] Barrett D M. Modeling the characteristics of a magnetically switched pulse-forming line[C]//Proceeding of 7th IEEE International Pulsed Power Conference. 1989: 167-170. [15] Li Song, Gao Jingming, Yang Hanwu, et al. A gigawatt level repetitive rate adjustable magnetic pulse compressor[J]. Review of Scientific Instruments, 2015, 86: 084705. doi: 10.1063/1.4929516 [16] 张星汝, 冯冰洋, 刘俊, 等. 高电压大电流晶闸管组件的热特性[J]. 强激光与粒子束, 2020, 32:025016. (Zhang Xingru, Feng Bingyang, Liu Jun, et al. Thermal characteristics of high voltage and high current thyristor assembly[J]. High Power Laser and Particle Beams, 2020, 32: 025016 doi: 10.11884/HPLPB202032.190346Zhang Xingru, Feng Bingyang, Liu Jun, et al. Thermal characteristics of high voltage and high current thyristor assembly[J]. High Power Laser and Particle Beams, 2020, 32: 025016 doi: 10.11884/HPLPB202032.190346