-
摘要:
X射线自由电子激光器(FEL)由于其超高亮度、超短脉冲等特点,在世界范围内得到广泛应用。 基于尾流场理论,我们计算了上海X射线自由电子激光器(SXFEL)中从直线加速器出口到波荡器末端,束流在245 m不锈钢传输线和波荡器中的阻抗壁尾场。通过对两种不同的阻抗壁尾场的叠加,发现将导致束流纵向相空间的畸变。在SXFEL上进行束流物理的实验,并得到与理论预测非常吻合的实验结果。 结合之前对主要直线加速器部分的详细模拟和实验研究,为后续FEL整体束流优化提供了参考。
-
关键词:
- 上海软X射线自由电子激光 /
- 纵向相空间 /
- 阻抗壁尾场 /
- 能量分布畸变
Abstract:X-ray free-electron laser (XFEL), due to its ultra-high brightness, ultra-short pulse and other characteristics, has been built worldwide. Based on the theory of wakefield, we calculate the resistive wall wakefield from the linear accelerator (linac) exit to the end of the undulator in Shanghai X-ray free electron laser (SXFEL) with bunch traveling through the 245 m stainless steel transfer line and copper beamline in undulator. Then we analyze the resistive wall wakefields which eventually lead to the distortion of the longitudinal phase space within the bunch. Finally, the theoretical predictions of influence of resistive wall wakefield are compared with experiment results on SXFEL, which shows great agreement. The detailed research provides a direction for subsequent FEL optimization.
-
Table 1. Parameters of three different types of pipes
material type length/m radius/mm bypass-line 1 stainless-steel round 125 17.50 bypass-line 2 stainless-steel round 120 8.00 undulator copper flat plate 40 2.15 Table 2. Initial bunch parameters in SXFEL
length/µm energy /GeV charge/pC bunch A 250 1.35 500 bunch B 120 1.35 500 -
[1] Kim K J. Brightness, coherence and propagation characteristics of synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1986, 246(1/3): 71-76. doi: 10.1016/0168-9002(86)90048-3 [2] Öström H, Öberg H, Xin H, et al. Probing the transition state region in catalytic CO oxidation on Ru[J]. Science, 2015, 347(6225): 978-982. doi: 10.1126/science.1261747 [3] Young L, Kanter E P, Krässig B, et al. Femtosecond electronic response of atoms to ultra-intense X-rays[J]. Nature, 2010, 466(7302): 56-61. doi: 10.1038/nature09177 [4] Liu Hailin, Hu Jie, Jiang Lan, et al. Ultrabroad antireflection urchin-like array through synergy of inverse fabrications by femtosecond laser-tuned chemical process[J]. Applied Surface Science, 2020, 528: 146804. doi: 10.1016/j.apsusc.2020.146804 [5] Cheng C H, Li Ming. Nanometer material processing using NSOM-delivered femtosecond laser pulses[J]. MRS Online Proceedings Library, 2004, 850(1): 104-109. doi: 10.1557/PROC-850-MM2.8 [6] Geng Heping, Chen Jiahui, Zhao Zhentang. Scheme for generating 1 nm X-ray beams carrying orbital angular momentum at the SXFEL[J]. Nuclear Science and Techniques, 2020, 31(9): 88. doi: 10.1007/s41365-020-00794-7 [7] Wang Jinguo, Liu Bo. Development of readout electronics for bunch arrival-time monitor system at SXFEL[J]. Nuclear Science and Techniques, 2019, 30: 82. doi: 10.1007/s41365-019-0594-2 [8] Xiao Chengcheng, Zhang Junqiang, Tan Jianhao, et al. Design and preliminary test of the LLRF in C band high-gradient test facility for SXFEL[J]. Nuclear Science and Techniques, 2020, 31: 100. doi: 10.1007/s41365-020-00806-6 [9] Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2021, 2: 100097. doi: 10.1016/j.xinn.2021.100097 [10] Zhao Zhentang, Wang Dong, Yin Lixin, et al. Shanghai soft X-ray free-electron laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100004. doi: 10.3788/CJL201946.0100004 [11] Zhao Zhentang, Wang Dong, Gu Qiang, et al. Status of the SXFEL facility[J]. Applied Sciences, 2017, 7: 607. doi: 10.3390/app7060607 [12] Chao A W. Physics of collective beam instabilities in high energy accelerators[M]. New York: Wiley, 1993. [13] Bane K L F. Wakefields of sub-picosecond electron bunches[R]. Report No. SLAC-PUB-11829, 2006. [14] Bane K L F, Sands M. The short-range resistive wall wakefields[J]. AIP Conference Proceedings, 1996, 367(1): 131-149. doi: 10.1063/1.50300 [15] Bane K, Raubenheimer T. Raubenheimer. Wakefield effects of the bypass line in LCLS-II[R]. Report No. SLAC-PUB-16142, 2014. [16] Stupakov G, Bane K L F, Emma P, et al. Resistive wall wakefields of short bunches at cryogenic temperatures[J]. Physical Review Accelerators and Beams, 2015, 18: 034402. doi: 10.1103/PhysRevSTAB.18.034402