留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of SXFEL resistive wall wakefield on beam phase space distortion

Gong Youwei Cheng Wencai Zhao Minghua Li Xuan Gu Duan Zhang Meng

龚有为, 程文才, 赵明华, 等. SXFEL阻抗壁尾场对束流相空间畸变的影响[J]. 强激光与粒子束, 2022, 34: 064007. doi: 10.11884/HPLPB202234.210491
引用本文: 龚有为, 程文才, 赵明华, 等. SXFEL阻抗壁尾场对束流相空间畸变的影响[J]. 强激光与粒子束, 2022, 34: 064007. doi: 10.11884/HPLPB202234.210491
Gong Youwei, Cheng Wencai, Zhao Minghua, et al. Influence of SXFEL resistive wall wakefield on beam phase space distortion[J]. High Power Laser and Particle Beams, 2022, 34: 064007. doi: 10.11884/HPLPB202234.210491
Citation: Gong Youwei, Cheng Wencai, Zhao Minghua, et al. Influence of SXFEL resistive wall wakefield on beam phase space distortion[J]. High Power Laser and Particle Beams, 2022, 34: 064007. doi: 10.11884/HPLPB202234.210491

SXFEL阻抗壁尾场对束流相空间畸变的影响

doi: 10.11884/HPLPB202234.210491
详细信息
  • 中图分类号: TL53

Influence of SXFEL resistive wall wakefield on beam phase space distortion

More Information
  • 摘要:

    X射线自由电子激光器(FEL)由于其超高亮度、超短脉冲等特点,在世界范围内得到广泛应用。 基于尾流场理论,我们计算了上海X射线自由电子激光器(SXFEL)中从直线加速器出口到波荡器末端,束流在245 m不锈钢传输线和波荡器中的阻抗壁尾场。通过对两种不同的阻抗壁尾场的叠加,发现将导致束流纵向相空间的畸变。在SXFEL上进行束流物理的实验,并得到与理论预测非常吻合的实验结果。 结合之前对主要直线加速器部分的详细模拟和实验研究,为后续FEL整体束流优化提供了参考。

  • Figure  1.  Layout of the SXFEL

    Figure  2.  Total wakefield in the bypass-line 1 and bypass-line 2. $ {\sigma }_{z} $= 0 represents the head of the bunch, and the y-axis represents wakefield in MeV unit

    Figure  3.  Wakefield in the copper flat-plate pipe. The $ {\sigma }_{z} $= 0 represents the head of the bunch, and the y-axis represents wakefield in MeV unit

    Figure  4.  Total wakefield for bypass-line 1, bypass-line 2 and the copper flat-plate pipe. $ {\sigma }_{z} $= 0 represents the head of the bunch, and y-axis represents wakefield in MeV unit

    Figure  5.  Experimental layout of SXFEL

    Figure  6.  (a) Distribution for bunch A, and (b) measured and calculated wakefields in bypass-line 1

    Figure  7.  Measured longitudinal phase space in position 1 and position 2. The figure is separated in 500×500 pixels, and x axis stands for bunch length (left is beam head), y stands for the energy (top is higher energy)

    Figure  8.  The energy distribution in position 1 and position 3

    Figure  9.  (a) Distribution for bunch B and (b) measured and calculated wakefields for all the pipes

    Table  1.   Parameters of three different types of pipes

    materialtypelength/mradius/mm
    bypass-line 1 stainless-steel round 125 17.50
    bypass-line 2 stainless-steel round 120 8.00
    undulator copper flat plate 40 2.15
    下载: 导出CSV

    Table  2.   Initial bunch parameters in SXFEL

    length/µmenergy /GeVcharge/pC
    bunch A 250 1.35 500
    bunch B 120 1.35 500
    下载: 导出CSV
  • [1] Kim K J. Brightness, coherence and propagation characteristics of synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1986, 246(1/3): 71-76. doi: 10.1016/0168-9002(86)90048-3
    [2] Öström H, Öberg H, Xin H, et al. Probing the transition state region in catalytic CO oxidation on Ru[J]. Science, 2015, 347(6225): 978-982. doi: 10.1126/science.1261747
    [3] Young L, Kanter E P, Krässig B, et al. Femtosecond electronic response of atoms to ultra-intense X-rays[J]. Nature, 2010, 466(7302): 56-61. doi: 10.1038/nature09177
    [4] Liu Hailin, Hu Jie, Jiang Lan, et al. Ultrabroad antireflection urchin-like array through synergy of inverse fabrications by femtosecond laser-tuned chemical process[J]. Applied Surface Science, 2020, 528: 146804. doi: 10.1016/j.apsusc.2020.146804
    [5] Cheng C H, Li Ming. Nanometer material processing using NSOM-delivered femtosecond laser pulses[J]. MRS Online Proceedings Library, 2004, 850(1): 104-109. doi: 10.1557/PROC-850-MM2.8
    [6] Geng Heping, Chen Jiahui, Zhao Zhentang. Scheme for generating 1 nm X-ray beams carrying orbital angular momentum at the SXFEL[J]. Nuclear Science and Techniques, 2020, 31(9): 88. doi: 10.1007/s41365-020-00794-7
    [7] Wang Jinguo, Liu Bo. Development of readout electronics for bunch arrival-time monitor system at SXFEL[J]. Nuclear Science and Techniques, 2019, 30: 82. doi: 10.1007/s41365-019-0594-2
    [8] Xiao Chengcheng, Zhang Junqiang, Tan Jianhao, et al. Design and preliminary test of the LLRF in C band high-gradient test facility for SXFEL[J]. Nuclear Science and Techniques, 2020, 31: 100. doi: 10.1007/s41365-020-00806-6
    [9] Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2021, 2: 100097. doi: 10.1016/j.xinn.2021.100097
    [10] Zhao Zhentang, Wang Dong, Yin Lixin, et al. Shanghai soft X-ray free-electron laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100004. doi: 10.3788/CJL201946.0100004
    [11] Zhao Zhentang, Wang Dong, Gu Qiang, et al. Status of the SXFEL facility[J]. Applied Sciences, 2017, 7: 607. doi: 10.3390/app7060607
    [12] Chao A W. Physics of collective beam instabilities in high energy accelerators[M]. New York: Wiley, 1993.
    [13] Bane K L F. Wakefields of sub-picosecond electron bunches[R]. Report No. SLAC-PUB-11829, 2006.
    [14] Bane K L F, Sands M. The short-range resistive wall wakefields[J]. AIP Conference Proceedings, 1996, 367(1): 131-149. doi: 10.1063/1.50300
    [15] Bane K, Raubenheimer T. Raubenheimer. Wakefield effects of the bypass line in LCLS-II[R]. Report No. SLAC-PUB-16142, 2014.
    [16] Stupakov G, Bane K L F, Emma P, et al. Resistive wall wakefields of short bunches at cryogenic temperatures[J]. Physical Review Accelerators and Beams, 2015, 18: 034402. doi: 10.1103/PhysRevSTAB.18.034402
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  728
  • HTML全文浏览量:  239
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2022-03-23
  • 网络出版日期:  2022-03-28
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回